Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):1086–1095. doi: 10.1016/S0006-3495(02)75468-4

Solid-state (13)C NMR reveals effects of temperature and hydration on elastin.

Ashlee Perry 1, Michael P Stypa 1, Brandon K Tenn 1, Kristin K Kumashiro 1
PMCID: PMC1301915  PMID: 11806948

Abstract

Elastin is the principal protein component of the elastic fiber in vertebrate tissue. The waters of hydration in the elastic fiber are believed to play a critical role in the structure and function of this largely hydrophobic, amorphous protein. (13)C CPMAS NMR spectra are acquired for elastin samples with different hydration levels. The spectral intensities in the aliphatic region undergo significant changes as 70% of the water in hydrated elastin is removed. In addition, dramatic differences in the CPMAS spectra of hydrated, lyophilized, and partially dehydrated elastin samples over a relatively small temperature range (-20 degrees C to 37 degrees C) are observed. Results from other experiments, including (13)C T(1) and (1)H T(1 rho) measurements, direct polarization with magic-angle spinning, and static CP of the hydrated and lyophilized elastin preparations, also support the model that there is significant mobility in fully hydrated elastin. Our results support models in which water plays an integral role in the structure and proper function of elastin in vertebrate tissue.

Full Text

The Full Text of this article is available as a PDF (204.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Debelle L., Alix A. J., Jacob M. P., Huvenne J. P., Berjot M., Sombret B., Legrand P. Bovine elastin and kappa-elastin secondary structure determination by optical spectroscopies. J Biol Chem. 1995 Nov 3;270(44):26099–26103. doi: 10.1074/jbc.270.44.26099. [DOI] [PubMed] [Google Scholar]
  2. Debelle L., Alix A. J., Wei S. M., Jacob M. P., Huvenne J. P., Berjot M., Legrand P. The secondary structure and architecture of human elastin. Eur J Biochem. 1998 Dec 1;258(2):533–539. doi: 10.1046/j.1432-1327.1998.2580533.x. [DOI] [PubMed] [Google Scholar]
  3. Ellis G. E., Packer K. J. Nuclear spin-relaxation studies of hydrated elastin. Biopolymers. 1976 May;15(5):813–832. doi: 10.1002/bip.1976.360150502. [DOI] [PubMed] [Google Scholar]
  4. Gray W. R., Sandberg L. B., Foster J. A. Molecular model for elastin structure and function. Nature. 1973 Dec 21;246(5434):461–466. doi: 10.1038/246461a0. [DOI] [PubMed] [Google Scholar]
  5. Khongtong S., Ferguson G. S. Integration of bulk and interfacial properties in a polymeric system: rubber elasticity at a polybutadiene/water interface. J Am Chem Soc. 2001 Apr 18;123(15):3588–3594. doi: 10.1021/ja003224q. [DOI] [PubMed] [Google Scholar]
  6. Kumashir K. K., Niemczura W. P., Kim M. S., Sandberg L. B. Selection of side-chain carbons in a high-molecular-weight, hydrophobic peptide using solid-state spectral editing methods. J Biomol NMR. 2000 Oct;18(2):139–144. doi: 10.1023/a:1008334931234. [DOI] [PubMed] [Google Scholar]
  7. Kumashiro K. K., Kim M. S., Kaczmarek S. E., Sandberg L. B., Boyd C. D. (13)C cross-polarization/magic angle spinning NMR studies of alpha-elastin preparations show retention of overall structure and reduction of mobility with a decreased number of cross-links. Biopolymers. 2001 Oct 5;59(4):266–275. doi: 10.1002/1097-0282(20011005)59:4<266::AID-BIP1023>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  8. Li B., Alonso D. O., Daggett V. The molecular basis for the inverse temperature transition of elastin. J Mol Biol. 2001 Jan 19;305(3):581–592. doi: 10.1006/jmbi.2000.4306. [DOI] [PubMed] [Google Scholar]
  9. Rosenbloom J., Abrams W. R., Mecham R. Extracellular matrix 4: the elastic fiber. FASEB J. 1993 Oct;7(13):1208–1218. [PubMed] [Google Scholar]
  10. Saitô H., Yokoi M. A 13C NMR study on collagens in the solid state: hydration/dehydration-induced conformational change of collagen and detection of internal motions. J Biochem. 1992 Mar;111(3):376–382. doi: 10.1093/oxfordjournals.jbchem.a123765. [DOI] [PubMed] [Google Scholar]
  11. Weis-Fogh T., Anderson S. O. New molecular model for the long-range elasticity of elastin. Nature. 1970 Aug 15;227(5259):718–721. doi: 10.1038/227718a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES