Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1115–1122. doi: 10.1016/S0006-3495(02)75470-2

Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each.

Boris A Feniouk 1, Dmitry A Cherepanov 1, Natalia E Voskoboynikova 1, Armen Y Mulkidjanian 1, Wolfgang Junge 1
PMCID: PMC1301917  PMID: 11867431

Abstract

ATP synthase is a unique rotary machine that uses the transmembrane electrochemical potential difference of proton (Delta(H(+))) to synthesize ATP from ADP and inorganic phosphate. Charge translocation by the enzyme can be most conveniently followed in chromatophores of phototrophic bacteria (vesicles derived from invaginations of the cytoplasmic membrane). Excitation of chromatophores by a short flash of light generates a step of the proton-motive force, and the charge transfer, which is coupled to ATP synthesis, can be spectrophotometrically monitored by electrochromic absorption transients of intrinsic carotenoids in the coupling membrane. We assessed the average number of functional enzyme molecules per chromatophore vesicle. Kinetic analysis of the electrochromic transients plus/minus specific ATP synthase inhibitors (efrapeptin and venturicidin) showed that the extent of the enzyme-related proton transfer dropped as a function of the inhibitor concentration, whereas the time constant of the proton transfer changed only marginally. Statistical analysis of the kinetic data revealed that the average number of proton-conducting F(O)F(1)-molecules per chromatophore was approximately one. Thereby chromatophores of Rhodobacter capsulatus provide a system where the coupling of proton transfer to ATP synthesis can be studied in a single enzyme/single vesicle mode.

Full Text

The Full Text of this article is available as a PDF (198.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Buchanan S. K., Van Raaij M. J., Fearnley I. M., Leslie A. G., Walker J. E. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9420–9424. doi: 10.1073/pnas.93.18.9420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  3. Baccarini-Melandri A., Gest H., Pietro A. S. A coupling factor in bacterial photophosphorylation. J Biol Chem. 1970 Mar 10;245(5):1224–1226. [PubMed] [Google Scholar]
  4. Boyer P. D. ATP synthase--past and future. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):3–9. doi: 10.1016/s0005-2728(98)00066-8. [DOI] [PubMed] [Google Scholar]
  5. Brufani M., Keller-Schierlein W., Löffler W., Mansperger I., Zähner H. Uber des Venturicidin B, das Botrycidin und die Zuckerbausteine der Venturicidine A und B. Helv Chim Acta. 1968;51(6):1293–1304. doi: 10.1002/hlca.19680510612. [DOI] [PubMed] [Google Scholar]
  6. Cherepanov D. A., Mulkidjanian A. Y., Junge W. Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett. 1999 Apr 16;449(1):1–6. doi: 10.1016/s0014-5793(99)00386-5. [DOI] [PubMed] [Google Scholar]
  7. Clark A. J., Jackson J. B. The measurement of membrane potential during photosynthesis and during respiration in intact cells of Rhodopseudomonas capsulata by both electrochromism and by permeant ion redistribution. Biochem J. 1981 Nov 15;200(2):389–397. doi: 10.1042/bj2000389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dimroth P. Operation of the F(0) motor of the ATP synthase. Biochim Biophys Acta. 2000 May 31;1458(2-3):374–386. doi: 10.1016/s0005-2728(00)00088-8. [DOI] [PubMed] [Google Scholar]
  9. Dimroth P., Wang H., Grabe M., Oster G. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4924–4929. doi: 10.1073/pnas.96.9.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drachev L. A., Kaulen A. D., Khitrina L. V., Skulachev V. P. Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin. Eur J Biochem. 1981 Jul;117(3):461–470. doi: 10.1111/j.1432-1033.1981.tb06361.x. [DOI] [PubMed] [Google Scholar]
  11. Duncan T. M., Bulygin V. V., Zhou Y., Hutcheon M. L., Cross R. L. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964–10968. doi: 10.1073/pnas.92.24.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feniouk B. A., Cherepanov D. A., Junge W., Mulkidjanian A. Y. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores. Biochim Biophys Acta. 2001 Nov 1;1506(3):189–203. doi: 10.1016/s0005-2728(01)00213-4. [DOI] [PubMed] [Google Scholar]
  13. Gibbons C., Montgomery M. G., Leslie A. G., Walker J. E. The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution. Nat Struct Biol. 2000 Nov;7(11):1055–1061. doi: 10.1038/80981. [DOI] [PubMed] [Google Scholar]
  14. Jackson J. B., Crofts A. R. Bromothymol blue and bromocresol purple as indicators of pH changes in chromatophores of Rhodospirillum rubrum. Eur J Biochem. 1969 Sep;10(2):226–237. doi: 10.1111/j.1432-1033.1969.tb00678.x. [DOI] [PubMed] [Google Scholar]
  15. Jackson J. B., Crofts A. R. The high energy state in chromatophores from Rhodopseudomonas spheroides. FEBS Lett. 1969 Aug;4(3):185–189. doi: 10.1016/0014-5793(69)80230-9. [DOI] [PubMed] [Google Scholar]
  16. Jackson J. B., Crofts A. R. The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane. Eur J Biochem. 1971 Jan 1;18(1):120–130. doi: 10.1111/j.1432-1033.1971.tb01222.x. [DOI] [PubMed] [Google Scholar]
  17. Jackson J. B., Saphon S., Witt H. T. The extent of the stimulated electrical potential decay under phosphorylating conditions and the H+/ATP ratio in Rhodopseudomonas sphaeroides chromatophores following short flash excitation. Biochim Biophys Acta. 1975 Oct 10;408(1):83–92. doi: 10.1016/0005-2728(75)90160-7. [DOI] [PubMed] [Google Scholar]
  18. Junge W., Lill H., Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997 Nov;22(11):420–423. doi: 10.1016/s0968-0004(97)01129-8. [DOI] [PubMed] [Google Scholar]
  19. LASCELLES J. Adaptation to form bacteriochlorophyll in Rhodopseudomonas spheroides: changes in activity of enzymes concerned in pyrrole synthesis. Biochem J. 1959 Jul;72:508–518. doi: 10.1042/bj0720508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Linnett P. E., Beechey R. B. Inhibitors of the ATP synthethase system. Methods Enzymol. 1979;55:472–518. doi: 10.1016/0076-6879(79)55061-7. [DOI] [PubMed] [Google Scholar]
  21. Melandri B. A., Baccarini-Melandri A., San Pietro A., Gest H. Interchangeability of phosphorylation coupling factors in photosynthetic and respiratory energy conversion. Science. 1971 Oct 29;174(4008):514–516. doi: 10.1126/science.174.4008.514. [DOI] [PubMed] [Google Scholar]
  22. Melandri B. A., Baccarini-Melandri A., San Pietro A., Gest H. Role of phosphorylation coupling factor in light-dependent proton translocation by Rhodopseudomonas capsulata membrane preparations. Proc Natl Acad Sci U S A. 1970 Oct;67(2):477–484. doi: 10.1073/pnas.67.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Melandri Bruno A., Baccarini-Melandri Assunta, Crofts Antony R., Cogdell Richard J. Energy transduction in photosynthetic bacteria V. Role of coupling factor ATPase in energy conversion as revealed by light or ATP-induced quenching of atebrine fluorescence. FEBS Lett. 1972 Aug 1;24(2):141–145. doi: 10.1016/0014-5793(72)80752-x. [DOI] [PubMed] [Google Scholar]
  24. Mulkidjanian AYa, Mamedov M. D., Drachev L. A. Slow electrogenic events in the cytochrome bc1-complex of Rhodobacter sphaeroides. The electron transfer between cytochrome b hemes can be non-electrogenic. FEBS Lett. 1991 Jun 24;284(2):227–231. doi: 10.1016/0014-5793(91)80691-u. [DOI] [PubMed] [Google Scholar]
  25. Mulkidjanian A. Y., Junge W. Calibration and time resolution of lumenal pH-transients in chromatophores of Rhodobacter capsulatus following a single turnover flash of light: proton release by the cytochrome bc1-complex is strongly electrogenic. FEBS Lett. 1994 Oct 17;353(2):189–193. doi: 10.1016/0014-5793(94)01031-5. [DOI] [PubMed] [Google Scholar]
  26. Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
  27. Petty K. M., Jackson J. B. Correlation between ATP synthesis and the decay of the arotenoid band shift after single flash activation of chromatophores from Rhodopseudomonas capsulata. Biochim Biophys Acta. 1979 Sep 11;547(3):463–473. doi: 10.1016/0005-2728(79)90027-6. [DOI] [PubMed] [Google Scholar]
  28. Pänke O., Gumbiowski K., Junge W., Engelbrecht S. F-ATPase: specific observation of the rotating c subunit oligomer of EF(o)EF(1). FEBS Lett. 2000 Apr 21;472(1):34–38. doi: 10.1016/s0014-5793(00)01436-8. [DOI] [PubMed] [Google Scholar]
  29. Sabbert D., Engelbrecht S., Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. doi: 10.1038/381623a0. [DOI] [PubMed] [Google Scholar]
  30. Saphon S., Jackson J. B., Witt H. T. Electrical potential changes, H+ translocation and phosphorylation induced by short flash excitation in Rhodopseudomonas sphaeroides chromatophores. Biochim Biophys Acta. 1975 Oct 10;408(1):67–82. doi: 10.1016/0005-2728(75)90159-0. [DOI] [PubMed] [Google Scholar]
  31. Schmid R., Junge W. Current-voltage studies on the thylakoid membrane in the presence of ionophores. Biochim Biophys Acta. 1975 Jun 11;394(1):76–92. doi: 10.1016/0005-2736(75)90206-0. [DOI] [PubMed] [Google Scholar]
  32. Schumacher A., Drews G. Effects of light intensity on membrane differentiation in Rhodopseudomonas capsulata. Biochim Biophys Acta. 1979 Sep 11;547(3):417–428. doi: 10.1016/0005-2728(79)90022-7. [DOI] [PubMed] [Google Scholar]
  33. Seelert H., Poetsch A., Dencher N. A., Engel A., Stahlberg H., Müller D. J. Structural biology. Proton-powered turbine of a plant motor. Nature. 2000 May 25;405(6785):418–419. doi: 10.1038/35013148. [DOI] [PubMed] [Google Scholar]
  34. Stahlberg H., Müller D. J., Suda K., Fotiadis D., Engel A., Meier T., Matthey U., Dimroth P. Bacterial Na(+)-ATP synthase has an undecameric rotor. EMBO Rep. 2001 Mar;2(3):229–233. doi: 10.1093/embo-reports/kve047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stock D., Gibbons C., Arechaga I., Leslie A. G., Walker J. E. The rotary mechanism of ATP synthase. Curr Opin Struct Biol. 2000 Dec;10(6):672–679. doi: 10.1016/s0959-440x(00)00147-0. [DOI] [PubMed] [Google Scholar]
  36. Stock D., Leslie A. G., Walker J. E. Molecular architecture of the rotary motor in ATP synthase. Science. 1999 Nov 26;286(5445):1700–1705. doi: 10.1126/science.286.5445.1700. [DOI] [PubMed] [Google Scholar]
  37. Symons M., Swysen C., Sybesma C. The light-induced carotenoid absorbance changes in Rhodopseudomonas sphaeroides: an analysis and interpretation of the band shifts. Biochim Biophys Acta. 1977 Dec 23;462(3):706–717. doi: 10.1016/0005-2728(77)90112-8. [DOI] [PubMed] [Google Scholar]
  38. Tsuprun V. L., Orlova E. V., Mesyanzhinova I. V. Structure of the ATP-synthase studied by electron microscopy and image processing. FEBS Lett. 1989 Feb 27;244(2):279–282. doi: 10.1016/0014-5793(89)80545-9. [DOI] [PubMed] [Google Scholar]
  39. Turina P., Rumberg B., Melandri B. A., Gräber P. Activation of the H(+)-ATP synthase in the photosynthetic bacterium Rhodobacter capsulatus. J Biol Chem. 1992 Jun 5;267(16):11057–11063. [PubMed] [Google Scholar]
  40. Wang H., Oster G. Energy transduction in the F1 motor of ATP synthase. Nature. 1998 Nov 19;396(6708):279–282. doi: 10.1038/24409. [DOI] [PubMed] [Google Scholar]
  41. Weber J., Nadanaciva S., Senior A. E. ATP-driven rotation of the gamma subunit in F(1)-ATPase. FEBS Lett. 2000 Oct 13;483(1):1–5. doi: 10.1016/s0014-5793(00)02071-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES