Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1133–1146. doi: 10.1016/S0006-3495(02)75472-6

Molecular mechanisms of calcium and magnesium binding to parvalbumin.

M Susan Cates 1, Miguel L Teodoro 1, George N Phillips Jr 1
PMCID: PMC1301919  PMID: 11867433

Abstract

Molecular dynamics simulations have been used to investigate the relationship between the coordinating residues of the EF-hand calcium binding loop of parvalbumin and the overall plasticity and flexibility of the protein. The first simulation modeled the transition from Ca(2+) to Mg(2+) coordination by varying the van der Waals parameters for the bound metal ions. The glutamate at position 12 could be accurately and reversibly seen to be a source of selective bidentate ligation of Ca(2+) in the simulations. A second simulation correlated well with the experimental observation that an E101D substitution at EF loop position 12 results in a dramatically less tightly bound monodentate Ca(2+) coordination by aspartate. A final set of simulations investigated Ca(2+) binding in the E101D mutant loop in the presence of applied external forces designed to impose bidentate coordination. The results of these simulations illustrate that the aspartate is capable of attaining a suitable orientation for bidentate coordination, thus implying that it is the inherent rigidity of the loop that prevents bidentate coordination in the parvalbumin E101D mutant.

Full Text

The Full Text of this article is available as a PDF (938.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allouche D., Parello J., Sanejouand Y. H. Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study. J Mol Biol. 1999 Jan 15;285(2):857–873. doi: 10.1006/jmbi.1998.2329. [DOI] [PubMed] [Google Scholar]
  2. Andersson M., Malmendal A., Linse S., Ivarsson I., Forsén S., Svensson L. A. Structural basis for the negative allostery between Ca(2+)- and Mg(2+)-binding in the intracellular Ca(2+)-receptor calbindin D9k. Protein Sci. 1997 Jun;6(6):1139–1147. doi: 10.1002/pro.5560060602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blancuzzi Y., Padilla A., Parello J., Cavé A. Symmetrical rearrangement of the cation-binding sites of parvalbumin upon Ca2+/Mg2+ exchange. A study by 1H 2D NMR. Biochemistry. 1993 Feb 9;32(5):1302–1309. doi: 10.1021/bi00056a015. [DOI] [PubMed] [Google Scholar]
  4. Blum J. K., Berchtold M. W. Calmodulin-like effect of oncomodulin on cell proliferation. J Cell Physiol. 1994 Sep;160(3):455–462. doi: 10.1002/jcp.1041600308. [DOI] [PubMed] [Google Scholar]
  5. Blumenschein T. M., Reinach F. C. Analysis of affinity and specificity in an EF-hand site using double mutant cycles. Biochemistry. 2000 Apr 4;39(13):3603–3610. doi: 10.1021/bi9924718. [DOI] [PubMed] [Google Scholar]
  6. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  7. Calabretta B., Kaczmarek L., Mars W., Ochoa D., Gibson C. W., Hirschhorn R. R., Baserga R. Cell-cycle-specific genes differentially expressed in human leukemias. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4463–4467. doi: 10.1073/pnas.82.13.4463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cates M. S., Berry M. B., Ho E. L., Li Q., Potter J. D., Phillips G. N., Jr Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin. Structure. 1999 Oct 15;7(10):1269–1278. doi: 10.1016/s0969-2126(00)80060-x. [DOI] [PubMed] [Google Scholar]
  9. Chazin W. J. Releasing the calcium trigger. Nat Struct Biol. 1995 Sep;2(9):707–710. doi: 10.1038/nsb0995-707. [DOI] [PubMed] [Google Scholar]
  10. Declercq J. P., Evrard C., Lamzin V., Parello J. Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91 A) and at low temperature (100 K). Evidence for conformational multistates within the hydrophobic core. Protein Sci. 1999 Oct;8(10):2194–2204. doi: 10.1110/ps.8.10.2194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Declercq J. P., Tinant B., Parello J., Rambaud J. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol. 1991 Aug 20;220(4):1017–1039. doi: 10.1016/0022-2836(91)90369-h. [DOI] [PubMed] [Google Scholar]
  12. Falke J. J., Drake S. K., Hazard A. L., Peersen O. B. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys. 1994 Aug;27(3):219–290. doi: 10.1017/s0033583500003012. [DOI] [PubMed] [Google Scholar]
  13. Houdusse A., Cohen C. Structure of the regulatory domain of scallop myosin at 2 A resolution: implications for regulation. Structure. 1996 Jan 15;4(1):21–32. doi: 10.1016/s0969-2126(96)00006-8. [DOI] [PubMed] [Google Scholar]
  14. Ibragimova G. T., Wade R. C. Importance of explicit salt ions for protein stability in molecular dynamics simulation. Biophys J. 1998 Jun;74(6):2906–2911. doi: 10.1016/S0006-3495(98)77997-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996 Jan;21(1):14–17. [PubMed] [Google Scholar]
  16. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  17. Kawasaki H., Kretsinger R. H. Calcium-binding proteins. 1: EF-hands. Protein Profile. 1994;1(4):343–517. [PubMed] [Google Scholar]
  18. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
  19. Krzywkowski P., Potier B., Billard J. M., Dutar P., Lamour Y. Synaptic mechanisms and calcium binding proteins in the aged rat brain. Life Sci. 1996;59(5-6):421–428. doi: 10.1016/0024-3205(96)00321-9. [DOI] [PubMed] [Google Scholar]
  20. Lu H., Schulten K. Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins. 1999 Jun 1;35(4):453–463. [PubMed] [Google Scholar]
  21. Marchand S., Roux B. Molecular dynamics study of calbindin D9k in the apo and singly and doubly calcium-loaded states. Proteins. 1998 Nov 1;33(2):265–284. [PubMed] [Google Scholar]
  22. Polans A. S., Witkowska D., Haley T. L., Amundson D., Baizer L., Adamus G. Recoverin, a photoreceptor-specific calcium-binding protein, is expressed by the tumor of a patient with cancer-associated retinopathy. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9176–9180. doi: 10.1073/pnas.92.20.9176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  24. Swain A. L., Kretsinger R. H., Amma E. L. Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution. J Biol Chem. 1989 Oct 5;264(28):16620–16628. [PubMed] [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vito P., Lacanà E., D'Adamio L. Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science. 1996 Jan 26;271(5248):521–525. doi: 10.1126/science.271.5248.521. [DOI] [PubMed] [Google Scholar]
  27. Zimmer D. B., Cornwall E. H., Landar A., Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37(4):417–429. doi: 10.1016/0361-9230(95)00040-2. [DOI] [PubMed] [Google Scholar]
  28. da Silva A. C., Kendrick-Jones J., Reinach F. C. Determinants of ion specificity on EF-hands sites. Conversion of the Ca2+/Mg2+ site of smooth muscle myosin regulatory light chain into a Ca(2+)-specific site. J Biol Chem. 1995 Mar 24;270(12):6773–6778. doi: 10.1074/jbc.270.12.6773. [DOI] [PubMed] [Google Scholar]
  29. da Silva A. C., Reinach F. C. Calcium binding induces conformational changes in muscle regulatory proteins. Trends Biochem Sci. 1991 Feb;16(2):53–57. doi: 10.1016/0968-0004(91)90024-p. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES