Abstract
Continuum and atomistic descriptions of the partitioning of ions into a self-assembled (D,L)-octapeptide nanotube, cyclo[-(L-Ala-D-Ala)(4)-], are presented. Perturbation free energy calculations, including Ewald electrostatics, are used to estimate the electrostatic component of the excess free energy of charging Li(+), Na(+), Rb(+), and Cl(minus sign) ions inside the nanotube. The radial density and orientational distribution of water around the ion is calculated for the ion at two different positions inside the tube; it is seen that the calculated distributions are sensitive to the location of the ions. Two different continuum electrostatic models are formulated to describe the ion solvation inside the nanotube. When enhanced orientational structuring of water dipoles is evidenced, explicitly including the first solvation shell as part of the low dielectric nanotube environment provides good agreement with molecular dynamics simulations. When water orientational structuring is as in the reference bulk solvent, we find that treating the first shell water explicitly or as a high dielectric continuum leads to similar results. These results are discussed, and their importance for continuum electrostatic modeling of ion channels are highlighted.
Full Text
The Full Text of this article is available as a PDF (470.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aqvist J., Luzhkov V. Ion permeation mechanism of the potassium channel. Nature. 2000 Apr 20;404(6780):881–884. doi: 10.1038/35009114. [DOI] [PubMed] [Google Scholar]
- Aqvist J., Warshel A. Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A. Biophys J. 1989 Jul;56(1):171–182. doi: 10.1016/S0006-3495(89)82662-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
- Bashford D., Gerwert K. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol. 1992 Mar 20;224(2):473–486. doi: 10.1016/0022-2836(92)91009-e. [DOI] [PubMed] [Google Scholar]
- Bayley H. Designed membrane channels and pores. Curr Opin Biotechnol. 1999 Feb;10(1):94–103. doi: 10.1016/s0958-1669(99)80017-2. [DOI] [PubMed] [Google Scholar]
- Bernèche S., Roux B. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. Biophys J. 2000 Jun;78(6):2900–2917. doi: 10.1016/S0006-3495(00)76831-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beveridge D. L., DiCapua F. M. Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem. 1989;18:431–492. doi: 10.1146/annurev.bb.18.060189.002243. [DOI] [PubMed] [Google Scholar]
- Crozier P. S., Rowley R. L., Holladay N. B., Henderson D., Busath D. D. Molecular dynamics simulation of continuous current flow through a model biological membrane channel. Phys Rev Lett. 2001 Mar 12;86(11):2467–2470. doi: 10.1103/PhysRevLett.86.2467. [DOI] [PubMed] [Google Scholar]
- Fernandez-Lopez S., Kim H. S., Choi E. C., Delgado M., Granja J. R., Khasanov A., Kraehenbuehl K., Long G., Weinberger D. A., Wilcoxen K. M. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature. 2001 Jul 26;412(6845):452–455. doi: 10.1038/35086601. [DOI] [PubMed] [Google Scholar]
- Figueirido F., Del Buono G. S., Levy R. M. Molecular mechanics and electrostatic effects. Biophys Chem. 1994 Aug;51(2-3):235–241. doi: 10.1016/0301-4622(94)00044-1. [DOI] [PubMed] [Google Scholar]
- Ghadiri M. R., Granja J. R., Buehler L. K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature. 1994 May 26;369(6478):301–304. doi: 10.1038/369301a0. [DOI] [PubMed] [Google Scholar]
- Ghadiri M. R., Granja J. R., Milligan R. A., McRee D. E., Khazanovich N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature. 1993 Nov 25;366(6453):324–327. doi: 10.1038/366324a0. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Honig B. H. The dielectric constant of a folded protein. Biopolymers. 1986 Nov;25(11):2097–2119. doi: 10.1002/bip.360251106. [DOI] [PubMed] [Google Scholar]
- Hao Y., Pear M. R., Busath D. D. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels. Biophys J. 1997 Oct;73(4):1699–1716. doi: 10.1016/S0006-3495(97)78202-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opella S. J., Marassi F. M., Gesell J. J., Valente A. P., Kim Y., Oblatt-Montal M., Montal M. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol. 1999 Apr;6(4):374–379. doi: 10.1038/7610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partenskii M. B., Dorman V., Jordan P. C. Influence of a channel-forming peptide on energy barriers to ion permeation, viewed from a continuum dielectric perspective. Biophys J. 1994 Oct;67(4):1429–1438. doi: 10.1016/S0006-3495(94)80616-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partenskii M. B., Jordan P. C. Theoretical perspectives on ion-channel electrostatics: continuum and microscopic approaches. Q Rev Biophys. 1992 Nov;25(4):477–510. doi: 10.1017/s0033583500004388. [DOI] [PubMed] [Google Scholar]
- Pitera J. W., Falta M., van Gunsteren W. F. Dielectric properties of proteins from simulation: the effects of solvent, ligands, pH, and temperature. Biophys J. 2001 Jun;80(6):2546–2555. doi: 10.1016/S0006-3495(01)76226-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roux B., Karplus M. Ion transport in a model gramicidin channel. Structure and thermodynamics. Biophys J. 1991 May;59(5):961–981. doi: 10.1016/S0006-3495(91)82311-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roux B., MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science. 1999 Jul 2;285(5424):100–102. doi: 10.1126/science.285.5424.100. [DOI] [PubMed] [Google Scholar]
- Roux B. Valence selectivity of the gramicidin channel: a molecular dynamics free energy perturbation study. Biophys J. 1996 Dec;71(6):3177–3185. doi: 10.1016/S0006-3495(96)79511-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sancho M., Partenskii M. B., Dorman V., Jordan P. C. Extended dipolar chain model for ion channels: electrostriction effects and the translocational energy barrier. Biophys J. 1995 Feb;68(2):427–433. doi: 10.1016/S0006-3495(95)80204-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simonson T., Perahia D., Brünger A. T. Microscopic theory of the dielectric properties of proteins. Biophys J. 1991 Mar;59(3):670–690. doi: 10.1016/S0006-3495(91)82282-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart O. S., Goodfellow J. M., Wallace B. A. The pore dimensions of gramicidin A. Biophys J. 1993 Dec;65(6):2455–2460. doi: 10.1016/S0006-3495(93)81293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]