Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1190–1206. doi: 10.1016/S0006-3495(02)75476-3

Structure and dynamics of zymogen human blood coagulation factor X.

Divi Venkateswarlu 1, Lalith Perera 1, Tom Darden 1, Lee G Pedersen 1
PMCID: PMC1301923  PMID: 11867437

Abstract

The solution structure and dynamics of the human coagulation factor X (FX) have been investigated to understand the key structural elements in the zymogenic form that participates in the activation process. The model was constructed based on the 2.3-A-resolution x-ray crystallographic structure of active-site inhibited human FXa (PDB:1XKA). The missing gamma-carboxyglutamic acid (GLA) and part of epidermal growth factor 1 (EGF1) domains of the light chain were modeled based on the template of GLA-EGF1 domains of the tissue factor (TF)-bound FVIIa structure (PDB:1DAN). The activation peptide and other missing segments of FX were introduced using homology modeling. The full calcium-bound model of FX was subjected to 6.2 ns of molecular dynamics simulation in aqueous medium using the AMBER6.0 package. We observed significant reorientation of the serine-protease (SP) domain upon activation leading to a compact multi-domain structure. The solution structure of zymogen appears to be in a well-extended conformation with the distance between the calcium ions in the GLA domain and the catalytic residues estimated to be approximately 95 A in contrast to approximately 83 A in the activated form. The latter is in close agreement with fluorescence studies on FXa. The S1-specificity residues near the catalytic triad show significant differences between the zymogen and activated structures.

Full Text

The Full Text of this article is available as a PDF (580.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
  2. Betz A., Krishnaswamy S. Regions remote from the site of cleavage determine macromolecular substrate recognition by the prothrombinase complex. J Biol Chem. 1998 Apr 24;273(17):10709–10718. doi: 10.1074/jbc.273.17.10709. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Schwager P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol. 1975 Nov 15;98(4):693–717. doi: 10.1016/s0022-2836(75)80005-2. [DOI] [PubMed] [Google Scholar]
  4. Brandstetter H., Kühne A., Bode W., Huber R., von der Saal W., Wirthensohn K., Engh R. A. X-ray structure of active site-inhibited clotting factor Xa. Implications for drug design and substrate recognition. J Biol Chem. 1996 Nov 22;271(47):29988–29992. doi: 10.1074/jbc.271.47.29988. [DOI] [PubMed] [Google Scholar]
  5. Chattopadhyay A., James H. L., Fair D. S. Molecular recognition sites on factor Xa which participate in the prothrombinase complex. J Biol Chem. 1992 Jun 15;267(17):12323–12329. [PubMed] [Google Scholar]
  6. Cooper D. N., Millar D. S., Wacey A., Pemberton S., Tuddenham E. G. Inherited factor X deficiency: molecular genetics and pathophysiology. Thromb Haemost. 1997 Jul;78(1):161–172. [PubMed] [Google Scholar]
  7. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
  8. Di Scipio R. G., Hermodson M. A., Yates S. G., Davie E. W. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry. 1977 Feb 22;16(4):698–706. doi: 10.1021/bi00623a022. [DOI] [PubMed] [Google Scholar]
  9. Dittmar S., Ruf W., Edgington T. S. Influence of mutations in tissue factor on the fine specificity of macromolecular substrate activation. Biochem J. 1997 Feb 1;321(Pt 3):787–793. doi: 10.1042/bj3210787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujikawa K., Coan M. H., Legaz M. E., Davie E. W. The mechanism of activation of bovine factor X (Stuart factor) by intrinsic and extrinsic pathways. Biochemistry. 1974 Dec 17;13(26):5290–5299. doi: 10.1021/bi00723a006. [DOI] [PubMed] [Google Scholar]
  11. Furie B., Bing D. H., Feldmann R. J., Robison D. J., Burnier J. P., Furie B. C. Computer-generated models of blood coagulation factor Xa, factor IXa, and thrombin based upon structural homology with other serine proteases. J Biol Chem. 1982 Apr 10;257(7):3875–3882. [PubMed] [Google Scholar]
  12. Greer J. Comparative model-building of the mammalian serine proteases. J Mol Biol. 1981 Dec 25;153(4):1027–1042. doi: 10.1016/0022-2836(81)90465-4. [DOI] [PubMed] [Google Scholar]
  13. HOUGIE C., BARROW E. M., GRAHAM J. B. Stuart clotting defect. I. Segregation of an hereditary hemorrhagic state from the heterogeneous group heretofore called stable factor (SPCA, proconvertin, factor VII) deficiency. J Clin Invest. 1957 Mar;36(3):485–496. doi: 10.1172/JCI103446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang Q., Neuenschwander P. F., Rezaie A. R., Morrissey J. H. Substrate recognition by tissue factor-factor VIIa. Evidence for interaction of residues Lys165 and Lys166 of tissue factor with the 4-carboxyglutamate-rich domain of factor X. J Biol Chem. 1996 Sep 6;271(36):21752–21757. doi: 10.1074/jbc.271.36.21752. [DOI] [PubMed] [Google Scholar]
  15. Husten E. J., Esmon C. T., Johnson A. E. The active site of blood coagulation factor Xa. Its distance from the phospholipid surface and its conformational sensitivity to components of the prothrombinase complex. J Biol Chem. 1987 Sep 25;262(27):12953–12961. [PubMed] [Google Scholar]
  16. Häfner A., Merola F., Duportail G., Hutterer R., Schneider F. W., Hof M. Calcium-induced conformational change in fragment 1-86 of factor X. Biopolymers. 2000;57(4):226–234. doi: 10.1002/1097-0282(2000)57:4<226::AID-BIP4>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  17. Inoue K., Morita T. Identification of O-linked oligosaccharide chains in the activation peptides of blood coagulation factor X. The role of the carbohydrate moieties in the activation of factor X. Eur J Biochem. 1993 Nov 15;218(1):153–163. doi: 10.1111/j.1432-1033.1993.tb18361.x. [DOI] [PubMed] [Google Scholar]
  18. Jackson C. M. Factor X. Prog Hemost Thromb. 1984;7:55–109. [PubMed] [Google Scholar]
  19. Kamata K., Kawamoto H., Honma T., Iwama T., Kim S. H. Structural basis for chemical inhibition of human blood coagulation factor Xa. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6630–6635. doi: 10.1073/pnas.95.12.6630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim D. J., Thompson A. R., Nash D. R., James H. L. Factors XWenatchee I and II: compound heterozygosity involving two variant proteins. Biochim Biophys Acta. 1995 Jun 9;1271(2-3):327–334. doi: 10.1016/0925-4439(95)00051-5. [DOI] [PubMed] [Google Scholar]
  21. Kollman P. A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000 Dec;33(12):889–897. doi: 10.1021/ar000033j. [DOI] [PubMed] [Google Scholar]
  22. Lee M. R., Kollman P. A. Free-energy calculations highlight differences in accuracy between X-ray and NMR structures and add value to protein structure prediction. Structure. 2001 Oct;9(10):905–916. doi: 10.1016/s0969-2126(01)00660-8. [DOI] [PubMed] [Google Scholar]
  23. Leytus S. P., Foster D. C., Kurachi K., Davie E. W. Gene for human factor X: a blood coagulation factor whose gene organization is essentially identical with that of factor IX and protein C. Biochemistry. 1986 Sep 9;25(18):5098–5102. doi: 10.1021/bi00366a018. [DOI] [PubMed] [Google Scholar]
  24. Mann K. G., Nesheim M. E., Church W. R., Haley P., Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 1990 Jul 1;76(1):1–16. [PubMed] [Google Scholar]
  25. Mertens K., Bertina R. M. Pathways in the activation of human coagulation factor X. Biochem J. 1980 Mar 1;185(3):647–658. doi: 10.1042/bj1850647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Millar D. S., Elliston L., Deex P., Krawczak M., Wacey A. I., Reynaud J., Nieuwenhuis H. K., Bolton-Maggs P., Mannucci P. M., Reverter J. C. Molecular analysis of the genotype-phenotype relationship in factor X deficiency. Hum Genet. 2000 Feb;106(2):249–257. doi: 10.1007/s004390051035. [DOI] [PubMed] [Google Scholar]
  27. Nakagawa H., Takahashi N., Fujikawa K., Kawamura Y., Iino M., Takeya H., Ogawa H., Suzuki K. Identification of the oligosaccharide structures of human coagulation factor X activation peptide at each glycosylation site. Glycoconj J. 1995 Apr;12(2):173–181. doi: 10.1007/BF00731362. [DOI] [PubMed] [Google Scholar]
  28. Nemerson Y. Tissue factor and hemostasis. Blood. 1988 Jan;71(1):1–8. [PubMed] [Google Scholar]
  29. Nöbauer-Huhmann I. M., Höller W., Krinninger B., Turecek P. L., Richter G., Scharrer I., Forberg E., Watzke H. H. Factor X Frankfurt I: molecular and functional characterization of a hereditary factor X deficiency (Gla+25 to Lys). Blood Coagul Fibrinolysis. 1998 Mar;9(2):143–152. [PubMed] [Google Scholar]
  30. Padmanabhan K., Padmanabhan K. P., Tulinsky A., Park C. H., Bode W., Huber R., Blankenship D. T., Cardin A. D., Kisiel W. Structure of human des(1-45) factor Xa at 2.2 A resolution. J Mol Biol. 1993 Aug 5;232(3):947–966. doi: 10.1006/jmbi.1993.1441. [DOI] [PubMed] [Google Scholar]
  31. Perera L., Darden T. A., Pedersen L. G. Modeling human zymogen factor IX. Thromb Haemost. 2001 Apr;85(4):596–603. [PubMed] [Google Scholar]
  32. Perera L., Darden T. A., Pedersen L. G. Probing the structural changes in the light chain of human coagulation factor VIIa due to tissue factor association. Biophys J. 1999 Jul;77(1):99–113. doi: 10.1016/S0006-3495(99)76875-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Perera L., Foley C., Darden T. A., Stafford D., Mather T., Esmon C. T., Pedersen L. G. Modeling zymogen protein C. Biophys J. 2000 Dec;79(6):2925–2943. doi: 10.1016/S0006-3495(00)76530-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Persson E., Björk I., Stenflo J. Protein structural requirements for Ca2+ binding to the light chain of factor X. Studies using isolated intact fragments containing the gamma-carboxyglutamic acid region and/or the epidermal growth factor-like domains. J Biol Chem. 1991 Feb 5;266(4):2444–2452. [PubMed] [Google Scholar]
  35. Persson E., Selander M., Linse S., Drakenberg T., Ohlin A. K., Stenflo J. Calcium binding to the isolated beta-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. J Biol Chem. 1989 Oct 5;264(28):16897–16904. [PubMed] [Google Scholar]
  36. Pryzdial E. L., Kessler G. E. Kinetics of blood coagulation factor Xaalpha autoproteolytic conversion to factor Xabeta. Effect on inhibition by antithrombin, prothrombinase assembly, and enzyme activity. J Biol Chem. 1996 Jul 12;271(28):16621–16626. doi: 10.1074/jbc.271.28.16621. [DOI] [PubMed] [Google Scholar]
  37. Rezaie A. R., Esmon C. T. Contribution of residue 192 in factor Xa to enzyme specificity and function. J Biol Chem. 1995 Jul 7;270(27):16176–16181. doi: 10.1074/jbc.270.27.16176. [DOI] [PubMed] [Google Scholar]
  38. Rudolph A. E., Mullane M. P., Porche-Sorbet R., Tsuda S., Miletich J. P. Factor XSt. Louis II. Identification of a glycine substitution at residue 7 and characterization of the recombinant protein. J Biol Chem. 1996 Nov 8;271(45):28601–28606. doi: 10.1074/jbc.271.45.28601. [DOI] [PubMed] [Google Scholar]
  39. Ruf W., Edgington T. S. Structural biology of tissue factor, the initiator of thrombogenesis in vivo. FASEB J. 1994 Apr 1;8(6):385–390. [PubMed] [Google Scholar]
  40. Ruf W., Miles D. J., Rehemtulla A., Edgington T. S. Cofactor residues lysine 165 and 166 are critical for protein substrate recognition by the tissue factor-factor VIIa protease complex. J Biol Chem. 1992 Mar 25;267(9):6375–6381. [PubMed] [Google Scholar]
  41. Ruf W., Shobe J., Rao S. M., Dickinson C. D., Olson A., Edgington T. S. Importance of factor VIIa Gla-domain residue Arg-36 for recognition of the macromolecular substrate factor X Gla-domain. Biochemistry. 1999 Feb 16;38(7):1957–1966. doi: 10.1021/bi982254r. [DOI] [PubMed] [Google Scholar]
  42. Sabharwal A. K., Padmanabhan K., Tulinsky A., Mathur A., Gorka J., Bajaj S. P. Interaction of calcium with native and decarboxylated human factor X. Effect of proteolysis in the autolysis loop on catalytic efficiency and factor Va binding. J Biol Chem. 1997 Aug 29;272(35):22037–22045. doi: 10.1074/jbc.272.35.22037. [DOI] [PubMed] [Google Scholar]
  43. Selander-Sunnerhagen M., Ullner M., Persson E., Teleman O., Stenflo J., Drakenberg T. How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem. 1992 Sep 25;267(27):19642–19649. doi: 10.2210/pdb1ccf/pdb. [DOI] [PubMed] [Google Scholar]
  44. Shen T., Wong C. F., McCammon J. A. Atomistic Brownian dynamics simulation of peptide phosphorylation. J Am Chem Soc. 2001 Sep 19;123(37):9107–9111. doi: 10.1021/ja010190t. [DOI] [PubMed] [Google Scholar]
  45. Sherrill G. B., Meade J. B., Kalayanamit T., Monroe D. M., Church F. C. Calcium enhances factor Xa activity independent of gamma-carboxyglutamic acid residues. Thromb Res. 1988 Oct 1;52(1):53–60. doi: 10.1016/0049-3848(88)90040-0. [DOI] [PubMed] [Google Scholar]
  46. Stenflo J., Suttie J. W. Vitamin K-dependent formation of gamma-carboxyglutamic acid. Annu Rev Biochem. 1977;46:157–172. doi: 10.1146/annurev.bi.46.070177.001105. [DOI] [PubMed] [Google Scholar]
  47. Stubbs M. T., Bode W. The clot thickens: clues provided by thrombin structure. Trends Biochem Sci. 1995 Jan;20(1):23–28. doi: 10.1016/s0968-0004(00)88945-8. [DOI] [PubMed] [Google Scholar]
  48. Sunnerhagen M., Forsén S., Hoffrén A. M., Drakenberg T., Teleman O., Stenflo J. Structure of the Ca(2+)-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat Struct Biol. 1995 Jun;2(6):504–509. doi: 10.1038/nsb0695-504. [DOI] [PubMed] [Google Scholar]
  49. Sunnerhagen M., Olah G. A., Stenflo J., Forsén S., Drakenberg T., Trewhella J. The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR-small angle X-ray scattering study. Biochemistry. 1996 Sep 10;35(36):11547–11559. doi: 10.1021/bi960633j. [DOI] [PubMed] [Google Scholar]
  50. TELFER T. P., DENSON K. W., WRIGHT D. R. A new coagulation defect. Br J Haematol. 1956 Jul;2(3):308–316. doi: 10.1111/j.1365-2141.1956.tb06703.x. [DOI] [PubMed] [Google Scholar]
  51. Valcarce C., Selander-Sunnerhagen M., Tämlitz A. M., Drakenberg T., Björk I., Stenflo J. Calcium affinity of the NH2-terminal epidermal growth factor-like module of factor X. Effect of the gamma-carboxyglutamic acid-containing module. J Biol Chem. 1993 Dec 15;268(35):26673–26678. [PubMed] [Google Scholar]
  52. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  53. Watzke H. H., Lechner K., Roberts H. R., Reddy S. V., Welsch D. J., Friedman P., Mahr G., Jagadeeswaran P., Monroe D. M., High K. A. Molecular defect (Gla+14----Lys) and its functional consequences in a hereditary factor X deficiency (factor X "Vorarlberg"). J Biol Chem. 1990 Jul 15;265(20):11982–11989. [PubMed] [Google Scholar]
  54. Welsch D. J., Nelsestuen G. L. Amino-terminal alanine functions in a calcium-specific process essential for membrane binding by prothrombin fragment 1. Biochemistry. 1988 Jun 28;27(13):4939–4945. doi: 10.1021/bi00413a052. [DOI] [PubMed] [Google Scholar]
  55. Yegneswaran S., Wood G. M., Esmon C. T., Johnson A. E. Protein S alters the active site location of activated protein C above the membrane surface. A fluorescence resonance energy transfer study of topography. J Biol Chem. 1997 Oct 3;272(40):25013–25021. doi: 10.1074/jbc.272.40.25013. [DOI] [PubMed] [Google Scholar]
  56. York D. M., Wlodawer A., Pedersen L. G., Darden T. A. Atomic-level accuracy in simulations of large protein crystals. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8715–8718. doi: 10.1073/pnas.91.18.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zhang L., Castellino F. J. The binding energy of human coagulation protein C to acidic phospholipid vesicles contains a major contribution from leucine 5 in the gamma-carboxyglutamic acid domain. J Biol Chem. 1994 Feb 4;269(5):3590–3595. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES