Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1239–1253. doi: 10.1016/S0006-3495(02)75480-5

The brownian ratchet and power stroke models for posttranslational protein translocation into the endoplasmic reticulum.

Timothy C Elston 1
PMCID: PMC1301927  PMID: 11867441

Abstract

A quantitative analysis of experimental data for posttranslational translocation into the endoplasmic reticulum is performed. This analysis reveals that translocation involves a single rate-limiting step, which is postulated to be the release of the signal sequence from the translocation channel. Next, the Brownian ratchet and power stroke models of translocation are compared against the data. The data sets are simultaneously fit using a least-squares criterion, and both models are found to accurately reproduce the experimental results. A likelihood-ratio test reveals that the optimal fit of the Brownian ratchet model, which contains one fewer free parameter, does not differ significantly from that of the power stroke model. Therefore, the data considered here cannot be used to reject this import mechanism. The models are further analyzed using the estimated parameters to make experimentally testable predictions.

Full Text

The Full Text of this article is available as a PDF (421.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brodsky J. L., Schekman R. A Sec63p-BiP complex from yeast is required for protein translocation in a reconstituted proteoliposome. J Cell Biol. 1993 Dec;123(6 Pt 1):1355–1363. doi: 10.1083/jcb.123.6.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chauwin J. F., Oster G., Glick B. S. Strong precursor-pore interactions constrain models for mitochondrial protein import. Biophys J. 1998 Apr;74(4):1732–1743. doi: 10.1016/S0006-3495(98)77884-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corsi A. K., Schekman R. The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J Cell Biol. 1997 Jun 30;137(7):1483–1493. doi: 10.1083/jcb.137.7.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deshaies R. J., Sanders S. L., Feldheim D. A., Schekman R. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature. 1991 Feb 28;349(6312):806–808. doi: 10.1038/349806a0. [DOI] [PubMed] [Google Scholar]
  5. Elston T. C. A macroscopic description of biomolecular transport. J Math Biol. 2000 Sep;41(3):189–206. doi: 10.1007/s002850000043. [DOI] [PubMed] [Google Scholar]
  6. Elston T. C. Models of post-translational protein translocation. Biophys J. 2000 Nov;79(5):2235–2251. doi: 10.1016/S0006-3495(00)76471-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glick B. S. Can Hsp70 proteins act as force-generating motors? Cell. 1995 Jan 13;80(1):11–14. doi: 10.1016/0092-8674(95)90444-1. [DOI] [PubMed] [Google Scholar]
  8. Görlich D., Rapoport T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell. 1993 Nov 19;75(4):615–630. doi: 10.1016/0092-8674(93)90483-7. [DOI] [PubMed] [Google Scholar]
  9. Liebermeister W., Rapoport T. A., Heinrich R. Ratcheting in post-translational protein translocation: a mathematical model. J Mol Biol. 2001 Jan 19;305(3):643–656. doi: 10.1006/jmbi.2000.4302. [DOI] [PubMed] [Google Scholar]
  10. Lubensky D. K., Nelson D. R. Driven polymer translocation through a narrow pore. Biophys J. 1999 Oct;77(4):1824–1838. doi: 10.1016/S0006-3495(99)77027-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lyman S. K., Schekman R. Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces cerevisiae. J Cell Biol. 1995 Dec;131(5):1163–1171. doi: 10.1083/jcb.131.5.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matlack K. E., Misselwitz B., Plath K., Rapoport T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell. 1999 May 28;97(5):553–564. doi: 10.1016/s0092-8674(00)80767-9. [DOI] [PubMed] [Google Scholar]
  13. Matlack K. E., Plath K., Misselwitz B., Rapoport T. A. Protein transport by purified yeast Sec complex and Kar2p without membranes. Science. 1997 Aug 15;277(5328):938–941. doi: 10.1126/science.277.5328.938. [DOI] [PubMed] [Google Scholar]
  14. Misselwitz B., Staeck O., Rapoport T. A. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol Cell. 1998 Nov;2(5):593–603. doi: 10.1016/s1097-2765(00)80158-6. [DOI] [PubMed] [Google Scholar]
  15. Muthukumar M. Translocation of a confined polymer through a hole. Phys Rev Lett. 2001 Apr 2;86(14):3188–3191. doi: 10.1103/PhysRevLett.86.3188. [DOI] [PubMed] [Google Scholar]
  16. Panzner S., Dreier L., Hartmann E., Kostka S., Rapoport T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell. 1995 May 19;81(4):561–570. doi: 10.1016/0092-8674(95)90077-2. [DOI] [PubMed] [Google Scholar]
  17. Plath K., Mothes W., Wilkinson B. M., Stirling C. J., Rapoport T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell. 1998 Sep 18;94(6):795–807. doi: 10.1016/s0092-8674(00)81738-9. [DOI] [PubMed] [Google Scholar]
  18. Sanders S. L., Whitfield K. M., Vogel J. P., Rose M. D., Schekman R. W. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell. 1992 Apr 17;69(2):353–365. doi: 10.1016/0092-8674(92)90415-9. [DOI] [PubMed] [Google Scholar]
  19. Schmid D., Baici A., Gehring H., Christen P. Kinetics of molecular chaperone action. Science. 1994 Feb 18;263(5149):971–973. doi: 10.1126/science.8310296. [DOI] [PubMed] [Google Scholar]
  20. Schneider H. C., Berthold J., Bauer M. F., Dietmeier K., Guiard B., Brunner M., Neupert W. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature. 1994 Oct 27;371(6500):768–774. doi: 10.1038/371768a0. [DOI] [PubMed] [Google Scholar]
  21. Simon S. M., Blobel G. A protein-conducting channel in the endoplasmic reticulum. Cell. 1991 May 3;65(3):371–380. doi: 10.1016/0092-8674(91)90455-8. [DOI] [PubMed] [Google Scholar]
  22. Simon S. M., Peskin C. S., Oster G. F. What drives the translocation of proteins? Proc Natl Acad Sci U S A. 1992 May 1;89(9):3770–3774. doi: 10.1073/pnas.89.9.3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sung W, Park PJ. Polymer Translocation through a Pore in a Membrane. Phys Rev Lett. 1996 Jul 22;77(4):783–786. doi: 10.1103/PhysRevLett.77.783. [DOI] [PubMed] [Google Scholar]
  24. Vogel J. P., Misra L. M., Rose M. D. Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol. 1990 Jun;110(6):1885–1895. doi: 10.1083/jcb.110.6.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES