Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1254–1259. doi: 10.1016/S0006-3495(02)75481-7

Piezoelectric reciprocal relationship of the membrane motor in the cochlear outer hair cell.

Xiao-xia Dong 1, Mark Ospeck 1, Kuni H Iwasa 1
PMCID: PMC1301928  PMID: 11867442

Abstract

It has been shown that the membrane motor in the outer hair cell is driven by the membrane potential. Here we examine whether the motility satisfies the reciprocal relationship, the characteristic of piezoelectricity, by measuring charge displacement induced by stretching the cell with known force. The efficiency of inducing charge displacement was membrane potential dependent. The maximum efficiency of inducing charge displacement by force was approximately 20 fC/nN for 50-microm-long lateral membrane. The efficiency per cell stretching was 0.1 pC/microm. We found that these values are consistent with the reciprocal relationship based on the voltage sensitivity of approximately 20 nm/mV for 50-microm-long cell and force production of 0.1 nN/mV by the cell. We can thus conclude that the membrane motor in the outer hair cell satisfies a necessary condition for piezoelectricity and that the hair cell's piezoelectric coefficient of 20 fC/nN is four orders of magnitude greater than the best man-made material.

Full Text

The Full Text of this article is available as a PDF (106.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashmore J. F. A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol. 1987 Jul;388:323–347. doi: 10.1113/jphysiol.1987.sp016617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashmore J. F. Forward and reverse transduction in the mammalian cochlea. Neurosci Res Suppl. 1990;12:S39–S50. doi: 10.1016/0921-8696(90)90007-p. [DOI] [PubMed] [Google Scholar]
  3. Brownell W. E., Bader C. R., Bertrand D., de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985 Jan 11;227(4683):194–196. doi: 10.1126/science.3966153. [DOI] [PubMed] [Google Scholar]
  4. Dallos P., Hallworth R., Evans B. N. Theory of electrically driven shape changes of cochlear outer hair cells. J Neurophysiol. 1993 Jul;70(1):299–323. doi: 10.1152/jn.1993.70.1.299. [DOI] [PubMed] [Google Scholar]
  5. Gale J. E., Ashmore J. F. Charge displacement induced by rapid stretch in the basolateral membrane of the guinea-pig outer hair cell. Proc Biol Sci. 1994 Mar 22;255(1344):243–249. doi: 10.1098/rspb.1994.0035. [DOI] [PubMed] [Google Scholar]
  6. He D. Z., Dallos P. Somatic stiffness of cochlear outer hair cells is voltage-dependent. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8223–8228. doi: 10.1073/pnas.96.14.8223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iwasa K. H. A two-state piezoelectric model for outer hair cell motility. Biophys J. 2001 Nov;81(5):2495–2506. doi: 10.1016/S0006-3495(01)75895-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iwasa K. H., Adachi M. Force generation in the outer hair cell of the cochlea. Biophys J. 1997 Jul;73(1):546–555. doi: 10.1016/S0006-3495(97)78092-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iwasa K. H. Effect of membrane motor on the axial stiffness of the cochlear outer hair cell. J Acoust Soc Am. 2000 May;107(5 Pt 1):2764–2766. doi: 10.1121/1.428663. [DOI] [PubMed] [Google Scholar]
  10. Iwasa K. H. Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophys J. 1993 Jul;65(1):492–498. doi: 10.1016/S0006-3495(93)81053-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liberman M. C., Dodds L. W. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res. 1984 Oct;16(1):55–74. doi: 10.1016/0378-5955(84)90025-x. [DOI] [PubMed] [Google Scholar]
  12. Mountain D. C. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science. 1980 Oct 3;210(4465):71–72. doi: 10.1126/science.7414321. [DOI] [PubMed] [Google Scholar]
  13. Mountain D. C., Hubbard A. E. A piezoelectric model of outer hair cell function. J Acoust Soc Am. 1994 Jan;95(1):350–354. doi: 10.1121/1.408273. [DOI] [PubMed] [Google Scholar]
  14. Park H. W., Boduluri S. R., Moomaw J. F., Casey P. J., Beese L. S. Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science. 1997 Mar 21;275(5307):1800–1804. doi: 10.1126/science.275.5307.1800. [DOI] [PubMed] [Google Scholar]
  15. Santos-Sacchi J., Dilger J. P. Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res. 1988 Sep 15;35(2-3):143–150. doi: 10.1016/0378-5955(88)90113-x. [DOI] [PubMed] [Google Scholar]
  16. Santos-Sacchi J., Kakehata S., Kikuchi T., Katori Y., Takasaka T. Density of motility-related charge in the outer hair cell of the guinea pig is inversely related to best frequency. Neurosci Lett. 1998 Nov 13;256(3):155–158. doi: 10.1016/s0304-3940(98)00788-5. [DOI] [PubMed] [Google Scholar]
  17. Santos-Sacchi J. Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci. 1991 Oct;11(10):3096–3110. doi: 10.1523/JNEUROSCI.11-10-03096.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spector A. A., Brownell W. E., Popel A. S. Nonlinear active force generation by cochlear outer hair cell. J Acoust Soc Am. 1999 Apr;105(4):2414–2420. doi: 10.1121/1.426846. [DOI] [PubMed] [Google Scholar]
  19. Tolomeo J. A., Steele C. R. Orthotropic piezoelectric properties of the cochlear outer hair cell wall. J Acoust Soc Am. 1995 May;97(5 Pt 1):3006–3011. doi: 10.1121/1.411865. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES