Abstract
Recent experiments have shown that intense static magnetic fields can alter the geometry of the early cell cleavages of Xenopus laevis eggs. The changes depend on field orientation, strength, and timing. We present a model that qualitatively accounts for these effects and which presumes that the structures involved in cell division are cylindrically symmetric and diamagnetically anisotropic and that the geometry of the centrosome replication and spreading processes dictates the nominal cleavage geometry. Within this model, the altered cleavage geometry results from the magnetic field-induced realignment of mitotic structures, which causes a realignment of the centrosome replication and spreading processes.
Full Text
The Full Text of this article is available as a PDF (154.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bjerknes M. Physical theory of the orientation of astral mitotic spindles. Science. 1986 Dec 12;234(4782):1413–1416. doi: 10.1126/science.3787253. [DOI] [PubMed] [Google Scholar]
- Bras W., Diakun G. P., Díaz J. F., Maret G., Kramer H., Bordas J., Medrano F. J. The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and x-ray fiber diffraction study. Biophys J. 1998 Mar;74(3):1509–1521. doi: 10.1016/S0006-3495(98)77863-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denegre J. M., Valles J. M., Jr, Lin K., Jordan W. B., Mowry K. L. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14729–14732. doi: 10.1073/pnas.95.25.14729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerhart J., Danilchik M., Doniach T., Roberts S., Rowning B., Stewart R. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development. 1989;107 (Suppl):37–51. doi: 10.1242/dev.107.Supplement.37. [DOI] [PubMed] [Google Scholar]
- Helmstetter C. E. Gravity and the orientation of cell division. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10195–10198. doi: 10.1073/pnas.94.19.10195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman A. A., White J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol. 1987 Nov;105(5):2123–2135. doi: 10.1083/jcb.105.5.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Salmon E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell. 1995 Dec;6(12):1619–1640. doi: 10.1091/mbc.6.12.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connell C. B., Wang Y. L. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol Biol Cell. 2000 May;11(5):1765–1774. doi: 10.1091/mbc.11.5.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp D. J., Rogers G. C., Scholey J. M. Microtubule motors in mitosis. Nature. 2000 Sep 7;407(6800):41–47. doi: 10.1038/35024000. [DOI] [PubMed] [Google Scholar]
- Valles J. M., Jr, Lin K., Denegre J. M., Mowry K. L. Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation. Biophys J. 1997 Aug;73(2):1130–1133. doi: 10.1016/S0006-3495(97)78145-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokota H., Neff A. W., Malacinski G. M. Altering the position of the first horizontal cleavage furrow of the amphibian (Xenopus) egg reduces embryonic survival. Int J Dev Biol. 1992 Dec;36(4):527–535. [PubMed] [Google Scholar]
- Zhao M., Forrester J. V., McCaig C. D. A small, physiological electric field orients cell division. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4942–4946. doi: 10.1073/pnas.96.9.4942. [DOI] [PMC free article] [PubMed] [Google Scholar]