Abstract
Measurements of membrane capacitance (C(m)) in Xenopus laevis oocytes offer unique experimental possibilities but are difficult to perform with current methods. To improve C(m) measurements in the two-electrode voltage clamp (TEVC) mode, we developed a paired-ramp protocol and tested its performance in a model circuit (with tunable C(m), membrane resistance R(m), and series resistance R(s)) and in Xenopus oocytes. In the cell model and with R(s) = 0 Omega, inaccuracy of C(m) estimates was <1% under widely varying conditions (R(m) ranging from 100 to 2000 kOmega, and C(m) from 50 to 1000 nF). With R(s) > 0 Omega, C(m) was underestimated by a relative error epsilon closely approximated as epsilon approximate 2 x R(s)/(R(s) + R(m)), in keeping with the theoretical prediction. Thus, epsilon may be neglected under standard conditions or, under extreme conditions, corrected for if R(s) is known. Relative imprecision of C(m) estimates was small, independent of R(s), and inversely related to C(m) (<1.5% at 50 nF, <0.4% at 200 nF). Averaging allowed reliable detection of C(m) deviations from 200 nF of 0.1 nF, i.e., 0.05%. In Xenopus oocytes, we could resolve C(m) changes that were small (e.g., DeltaC(m) approximate 2 nF upon 100 muM 8-Br-cAMP), fast (e.g., DeltaC(m)/Deltat approximate 20nF/30s upon 1 muM phorbol myristate acetate (PMA)) or extended and complex (e.g., fast increase, followed by prolonged C(m) decrease upon 1 muM PMA). Rapidly alternating between paired ramps and a second, step protocol allowed quasi-simultaneous monitoring of additional electrical parameters such as R(m), slope conductance g(m), and reversal potential E(rev). Taken together, our method is suited to monitor C(m) in Xenopus oocytes conveniently, with high temporal resolution, accuracy and precision, and in parallel with other electrical parameters. Thus, it may be useful for the study of endo- and exocytosis and of membrane protein regulation and for electrophysiological high-throughput screening.
Full Text
The Full Text of this article is available as a PDF (436.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Almers W. Membrane capacity measurements on frog skeletal muscle in media of low ion content. J Physiol. 1974 Mar;237(3):573–605. doi: 10.1113/jphysiol.1974.sp010499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alvarez de la Rosa D., Zhang P., Náray-Fejes-Tóth A., Fejes-Tóth G., Canessa C. M. The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem. 1999 Dec 31;274(53):37834–37839. doi: 10.1074/jbc.274.53.37834. [DOI] [PubMed] [Google Scholar]
- Angleson J. K., Betz W. J. Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci. 1997 Jul;20(7):281–287. doi: 10.1016/s0166-2236(97)01083-7. [DOI] [PubMed] [Google Scholar]
- Awayda M. S. Specific and nonspecific effects of protein kinase C on the epithelial Na (+) channel. J Gen Physiol. 2000 May;115(5):559–570. doi: 10.1085/jgp.115.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumgartner W., Islas L., Sigworth F. J. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow. Biophys J. 1999 Oct;77(4):1980–1991. doi: 10.1016/S0006-3495(99)77039-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnir B., Loo D. D., Wright E. M. Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine. Pflugers Arch. 1991 Mar;418(1-2):79–85. doi: 10.1007/BF00370455. [DOI] [PubMed] [Google Scholar]
- Block M. L., Moody W. J. Changes in sodium, calcium and potassium currents during early embryonic development of the ascidian Boltenia villosa. J Physiol. 1987 Dec;393:619–634. doi: 10.1113/jphysiol.1987.sp016844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal E. M., Kaczmarek L. K. Modulation by cAMP of a slowly activating potassium channel expressed in Xenopus oocytes. J Neurosci. 1992 Jan;12(1):290–296. doi: 10.1523/JNEUROSCI.12-01-00290.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourinet E., Fournier F., Lory P., Charnet P., Nargeot J. Protein kinase C regulation of cardiac calcium channels expressed in Xenopus oocytes. Pflugers Arch. 1992 Jun;421(2-3):247–255. doi: 10.1007/BF00374834. [DOI] [PubMed] [Google Scholar]
- Chen P., Gillis K. D. The noise of membrane capacitance measurements in the whole-cell recording configuration. Biophys J. 2000 Oct;79(4):2162–2170. doi: 10.1016/S0006-3495(00)76464-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole K. S., Hodgkin A. L. MEMBRANE AND PROTOPLASM RESISTANCE IN THE SQUID GIANT AXON. J Gen Physiol. 1939 May 20;22(5):671–687. doi: 10.1085/jgp.22.5.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis H. J., Cole K. S. TRANSVERSE ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON. J Gen Physiol. 1938 Jul 20;21(6):757–765. doi: 10.1085/jgp.21.6.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forster I. C., Traebert M., Jankowski M., Stange G., Biber J., Murer H. Protein kinase C activators induce membrane retrieval of type II Na+-phosphate cotransporters expressed in Xenopus oocytes. J Physiol. 1999 Jun 1;517(Pt 2):327–340. doi: 10.1111/j.1469-7793.1999.0327t.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forster I., Hernando N., Biber J., Murer H. The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J Gen Physiol. 1998 Jul;112(1):1–18. doi: 10.1085/jgp.112.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gentet L. J., Stuart G. J., Clements J. D. Direct measurement of specific membrane capacitance in neurons. Biophys J. 2000 Jul;79(1):314–320. doi: 10.1016/S0006-3495(00)76293-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillis K. D. Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier. Pflugers Arch. 2000 Mar;439(5):655–664. doi: 10.1007/s004249900173. [DOI] [PubMed] [Google Scholar]
- Hirsch J. R., Loo D. D., Wright E. M. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. J Biol Chem. 1996 Jun 21;271(25):14740–14746. doi: 10.1074/jbc.271.25.14740. [DOI] [PubMed] [Google Scholar]
- Isom L. L., Ragsdale D. S., De Jongh K. S., Westenbroek R. E., Reber B. F., Scheuer T., Catterall W. A. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell. 1995 Nov 3;83(3):433–442. doi: 10.1016/0092-8674(95)90121-3. [DOI] [PubMed] [Google Scholar]
- Johnson J. W., Thompson S. Measurement of nonuniform current densities and current kinetics in Aplysia neurons using a large patch method. Biophys J. 1989 Feb;55(2):299–308. doi: 10.1016/S0006-3495(89)82805-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kado R. T. Membrane area and electrical capacitance. Methods Enzymol. 1993;221:273–299. doi: 10.1016/0076-6879(93)21024-3. [DOI] [PubMed] [Google Scholar]
- Keynes R. D. The kinetics of voltage-gated ion channels. Q Rev Biophys. 1994 Dec;27(4):339–434. doi: 10.1017/s0033583500003097. [DOI] [PubMed] [Google Scholar]
- Khan N. A., Quemener V., Moulinoux J. P. Exogeneous diacylglycerols downregulate the activity of Na(+)-K+ pump in Xenopus laevis oocytes. Exp Cell Res. 1991 Jun;194(2):248–251. doi: 10.1016/0014-4827(91)90361-w. [DOI] [PubMed] [Google Scholar]
- Klamo E. M., Drew M. E., Landfear S. M., Kavanaugh M. P. Kinetics and stoichiometry of a proton/myo-inositol cotransporter. J Biol Chem. 1996 Jun 21;271(25):14937–14943. doi: 10.1074/jbc.271.25.14937. [DOI] [PubMed] [Google Scholar]
- Kordas M., Melik Z., Peterec D., Zorec R. The voltage-clamp apparatus assisted by a 'current pump'. J Neurosci Methods. 1989 Jan;26(3):229–232. doi: 10.1016/0165-0270(89)90120-9. [DOI] [PubMed] [Google Scholar]
- Kusama T., Hatama K., Saito K., Kizawa Y., Murakami H. Activation of protein kinase C induces internalization of the GABA(C) receptors expressed in Xenopus oocytes. Jpn J Physiol. 2000 Aug;50(4):429–435. doi: 10.2170/jjphysiol.50.429. [DOI] [PubMed] [Google Scholar]
- Lindau M., Neher E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch. 1988 Feb;411(2):137–146. doi: 10.1007/BF00582306. [DOI] [PubMed] [Google Scholar]
- Lollike K., Lindau M. Membrane capacitance techniques to monitor granule exocytosis in neutrophils. J Immunol Methods. 1999 Dec 17;232(1-2):111–120. doi: 10.1016/s0022-1759(99)00169-6. [DOI] [PubMed] [Google Scholar]
- Loo D. D., Hazama A., Supplisson S., Turk E., Wright E. M. Relaxation kinetics of the Na+/glucose cotransporter. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5767–5771. doi: 10.1073/pnas.90.12.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loo D. D., Hirsch J. R., Sarkar H. K., Wright E. M. Regulation of the mouse retinal taurine transporter (TAUT) by protein kinases in Xenopus oocytes. FEBS Lett. 1996 Sep 2;392(3):250–254. doi: 10.1016/0014-5793(96)00823-x. [DOI] [PubMed] [Google Scholar]
- Mastroberardino L., Spindler B., Forster I., Loffing J., Assandri R., May A., Verrey F. Ras pathway activates epithelial Na+ channel and decreases its surface expression in Xenopus oocytes. Mol Biol Cell. 1998 Dec;9(12):3417–3427. doi: 10.1091/mbc.9.12.3417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCulloh D. H., Levitan H. Rabbit oocyte maturation: changes of membrane resistance, capacitance, and the frequency of spontaneous transient depolarizations. Dev Biol. 1987 Mar;120(1):162–169. doi: 10.1016/0012-1606(87)90114-x. [DOI] [PubMed] [Google Scholar]
- Moody W. J., Bosma M. M. Hormone-induced loss of surface membrane during maturation of starfish oocytes: differential effects on potassium and calcium channels. Dev Biol. 1985 Dec;112(2):396–404. doi: 10.1016/0012-1606(85)90412-9. [DOI] [PubMed] [Google Scholar]
- Moody W. J., Lansman J. B. Developmental regulation of Ca2+ and K+ currents during hormone-induced maturation of starfish oocytes. Proc Natl Acad Sci U S A. 1983 May;80(10):3096–3100. doi: 10.1073/pnas.80.10.3096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray K. T., Fahrig S. A., Deal K. K., Po S. S., Hu N. N., Snyders D. J., Tamkun M. M., Bennett P. B. Modulation of an inactivating human cardiac K+ channel by protein kinase C. Circ Res. 1994 Dec;75(6):999–1005. doi: 10.1161/01.res.75.6.999. [DOI] [PubMed] [Google Scholar]
- Nagel G., Volk C., Friedrich T., Ulzheimer J. C., Bamberg E., Koepsell H. A reevaluation of substrate specificity of the rat cation transporter rOCT1. J Biol Chem. 1997 Dec 19;272(51):31953–31956. doi: 10.1074/jbc.272.51.31953. [DOI] [PubMed] [Google Scholar]
- Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E. Two fast transient current components during voltage clamp on snail neurons. J Gen Physiol. 1971 Jul;58(1):36–53. doi: 10.1085/jgp.58.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol. 1992 Jan;125(1):49–62. doi: 10.1007/BF00235797. [DOI] [PubMed] [Google Scholar]
- Peres A., Bernardini G. The effective membrane capacity of Xenopus eggs: its relations with membrane conductance and cortical granule exocytosis. Pflugers Arch. 1985 Jul;404(3):266–272. doi: 10.1007/BF00581249. [DOI] [PubMed] [Google Scholar]
- Peters K. W., Qi J., Watkins S. C., Frizzell R. A. Syntaxin 1A inhibits regulated CFTR trafficking in xenopus oocytes. Am J Physiol. 1999 Jul;277(1 Pt 1):C174–C180. doi: 10.1152/ajpcell.1999.277.1.C174. [DOI] [PubMed] [Google Scholar]
- Piwon N., Günther W., Schwake M., Bösl M. R., Jentsch T. J. ClC-5 Cl- -channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature. 2000 Nov 16;408(6810):369–373. doi: 10.1038/35042597. [DOI] [PubMed] [Google Scholar]
- Polder H. R., Swandulla D. The use of control theory for the design of voltage clamp systems: a simple and standardized procedure for evaluating system parameters. J Neurosci Methods. 2001 Aug 30;109(2):97–109. doi: 10.1016/s0165-0270(01)00385-5. [DOI] [PubMed] [Google Scholar]
- Quick M. W., Corey J. L., Davidson N., Lester H. A. Second messengers, trafficking-related proteins, and amino acid residues that contribute to the functional regulation of the rat brain GABA transporter GAT1. J Neurosci. 1997 May 1;17(9):2967–2979. doi: 10.1523/JNEUROSCI.17-09-02967.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajan S., Wischmeyer E., Karschin C., Preisig-Müller R., Grzeschik K. H., Daut J., Karschin A., Derst C. THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem. 2000 Nov 1;276(10):7302–7311. doi: 10.1074/jbc.M008985200. [DOI] [PubMed] [Google Scholar]
- Schmalzing G., Richter H. P., Hansen A., Schwarz W., Just I., Aktories K. Involvement of the GTP binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes. J Cell Biol. 1995 Sep;130(6):1319–1332. doi: 10.1083/jcb.130.6.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman A. J., Shrier A., Cooper E. Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator. Biophys J. 1999 Nov;77(5):2590–2601. doi: 10.1016/S0006-3495(99)77093-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stühmer W. Electrophysiologic recordings from Xenopus oocytes. Methods Enzymol. 1998;293:280–300. doi: 10.1016/s0076-6879(98)93019-1. [DOI] [PubMed] [Google Scholar]
- Takahashi A., Watkins S. C., Howard M., Frizzell R. A. CFTR-dependent membrane insertion is linked to stimulation of the CFTR chloride conductance. Am J Physiol. 1996 Dec;271(6 Pt 1):C1887–C1894. doi: 10.1152/ajpcell.1996.271.6.C1887. [DOI] [PubMed] [Google Scholar]
- Tong Y., Brandt G. S., Li M., Shapovalov G., Slimko E., Karschin A., Dougherty D. A., Lester H. A. Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel. J Gen Physiol. 2001 Feb;117(2):103–118. doi: 10.1085/jgp.117.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vasilets L. A., Schmalzing G., Mädefessel K., Haase W., Schwarz W. Activation of protein kinase C by phorbol ester induces downregulation of the Na+/K(+)-ATPase in oocytes of Xenopus laevis. J Membr Biol. 1990 Nov;118(2):131–142. doi: 10.1007/BF01868470. [DOI] [PubMed] [Google Scholar]
- Weber W. M., Cuppens H., Cassiman J. J., Clauss W., Van Driessche W. Capacitance measurements reveal different pathways for the activation of CFTR. Pflugers Arch. 1999 Sep;438(4):561–569. doi: 10.1007/s004249900086. [DOI] [PubMed] [Google Scholar]
- Wright E. M., Hirsch J. R., Loo D. D., Zampighi G. A. Regulation of Na+/glucose cotransporters. J Exp Biol. 1997 Jan;200(Pt 2):287–293. doi: 10.1242/jeb.200.2.287. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Hamill O. P. On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol. 2000 Feb 15;523(Pt 1):101–115. doi: 10.1111/j.1469-7793.2000.00101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu S. J., Kavanaugh M. P., Sonders M. S., Amara S. G., Zahniser N. R. Activation of protein kinase C inhibits uptake, currents and binding associated with the human dopamine transporter expressed in Xenopus oocytes. J Pharmacol Exp Ther. 1997 Sep;282(3):1358–1365. [PubMed] [Google Scholar]