Abstract
We describe measurements of lateral diffusion in membranes using resonance energy transfer. The donor was a rhenium (Re) metal-ligand complex lipid, which displays a donor decay time near 3 micros. The long donor lifetime resulted in an ability to measure lateral diffusion coefficient below 10(-8) cm(2)/s. The donor decay data were analyzed using a new numerical algorithm for calculation of resonance energy transfer for donors and acceptors randomly distributed in two dimensions. An analytical solution to the diffusion equation in two dimensions is not known, so the equation was solved by the relaxation method in Laplace space. This algorithm allows the donor decay in the absence of energy transfer to be multiexponential. The simulations show that mutual lateral diffusion coefficients of the donor and acceptor on the order of 10(-8) cm(2)/s are readily recovered from the frequency-domain data with donor decay times on the microsecond timescale. Importantly, the lateral diffusion coefficients and acceptor concentrations can be recovered independently despite correlation between these parameters. This algorithm was tested and verified using the donor decays of a long lifetime rhenium lipid donor and a Texas red-lipid acceptor. Lateral diffusion coefficients ranged from 4.4 x 10(-9) cm(2)/s in 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG) at 10 degrees C to 1.7 x 10(-7) cm(2)/s in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at 35 degrees C. These results demonstrated the possibility of direct measurements of lateral diffusion coefficients using microsecond decay time luminophores.
Full Text
The Full Text of this article is available as a PDF (327.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Castellano F. N., Dattelbaum J. D., Lakowicz J. R. Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups. Anal Biochem. 1998 Jan 15;255(2):165–170. doi: 10.1006/abio.1997.2468. [DOI] [PubMed] [Google Scholar]
- Dewey T. G., Hammes G. G. Calculation on fluorescence resonance energy transfer on surfaces. Biophys J. 1980 Dec;32(3):1023–1035. doi: 10.1016/S0006-3495(80)85033-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edidin M., Zúiga M. C., Sheetz M. P. Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3378–3382. doi: 10.1073/pnas.91.8.3378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estep T. N., Thompson T. E. Energy transfer in lipid bilayers. Biophys J. 1979 May;26(2):195–207. doi: 10.1016/S0006-3495(79)85244-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulbright R. M., Axelrod D., Dunham W. R., Marcelo C. L. Fatty acid alteration and the lateral diffusion of lipids in the plasma membrane of keratinocytes. Exp Cell Res. 1997 May 25;233(1):128–134. doi: 10.1006/excr.1997.3553. [DOI] [PubMed] [Google Scholar]
- Fung B. K., Stryer L. Surface density determination in membranes by fluorescence energy transfer. Biochemistry. 1978 Nov 28;17(24):5241–5248. doi: 10.1021/bi00617a025. [DOI] [PubMed] [Google Scholar]
- Gheber L. A., Edidin M. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys J. 1999 Dec;77(6):3163–3175. doi: 10.1016/S0006-3495(99)77147-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo X. Q., Castellano F. N., Li L., Szmacinski H., Lakowicz J. R., Sipior J. A long-lived, highly luminescent Re(I) metal-ligand complex as a biomolecular probe. Anal Biochem. 1997 Dec 15;254(2):179–186. doi: 10.1006/abio.1997.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson M. L. Evaluation and propagation of confidence intervals in nonlinear, asymmetrical variance spaces. Analysis of ligand-binding data. Biophys J. 1983 Oct;44(1):101–106. doi: 10.1016/S0006-3495(83)84281-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jørgensen H. S., Nakayama H., Reith J., Raaschou H. O., Olsen T. S. Acute stroke with atrial fibrillation. The Copenhagen Stroke Study. Stroke. 1996 Oct;27(10):1765–1769. doi: 10.1161/01.str.27.10.1765. [DOI] [PubMed] [Google Scholar]
- Kenworthy A. K., Edidin M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol. 1998 Jul 13;142(1):69–84. doi: 10.1083/jcb.142.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuśba J., Lakowicz J. R. Diffusion-modulated energy transfer and quenching: analysis by numerical integration of diffusion equation in laplace space. Methods Enzymol. 1994;240:216–262. doi: 10.1016/s0076-6879(94)40051-2. [DOI] [PubMed] [Google Scholar]
- Lakowicz J. R., Piszczek G., Kang J. S. On the possibility of long-wavelength long-lifetime high-quantum-yield luminophores. Anal Biochem. 2001 Jan 1;288(1):62–75. doi: 10.1006/abio.2000.4860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L., Castellano F. N., Gryczynski I., Lakowicz J. R. Long-lifetime lipid rhenium metal-ligand complex for probing membrane dynamics on the microsecond timescale. Chem Phys Lipids. 1999 May;99(1):1–9. doi: 10.1016/s0009-3084(99)00002-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L., Gryczynski I., Lakowicz J. R. Resonance energy transfer study using a rhenium metal-ligand lipid conjugate as the donor in a model membrane. Chem Phys Lipids. 1999 Sep;101(2):243–253. doi: 10.1016/s0009-3084(99)00066-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L., Szmacinski H., Lakowicz J. R. Synthesis and luminescence spectral characterization of long-lifetime lipid metal-ligand probes. Anal Biochem. 1997 Jan 1;244(1):80–85. doi: 10.1006/abio.1996.9869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lippincott-Schwartz J., Presley J. F., Zaal K. J., Hirschberg K., Miller C. D., Ellenberg J. Monitoring the dynamics and mobility of membrane proteins tagged with green fluorescent protein. Methods Cell Biol. 1999;58:261–281. doi: 10.1016/s0091-679x(08)61960-3. [DOI] [PubMed] [Google Scholar]
- Maliwal B. P., Gryczynski Z., Lakowicz J. R. Long-wavelength long-lifetime luminophores. Anal Chem. 2001 Sep 1;73(17):4277–4285. doi: 10.1021/ac0101050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marguet D., Spiliotis E. T., Pentcheva T., Lebowitz M., Schneck J., Edidin M. Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. Immunity. 1999 Aug;11(2):231–240. doi: 10.1016/s1074-7613(00)80098-9. [DOI] [PubMed] [Google Scholar]
- Marra J. Direct measurement of the interaction between phosphatidylglycerol bilayers in aqueous electrolyte solutions. Biophys J. 1986 Nov;50(5):815–825. doi: 10.1016/S0006-3495(86)83522-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin R. B., Richardson F. S. Lanthanides as probes for calcium in biological systems. Q Rev Biophys. 1979 May;12(2):181–209. doi: 10.1017/s0033583500002754. [DOI] [PubMed] [Google Scholar]
- Matko J., Edidin M. Energy transfer methods for detecting molecular clusters on cell surfaces. Methods Enzymol. 1997;278:444–462. doi: 10.1016/s0076-6879(97)78023-6. [DOI] [PubMed] [Google Scholar]
- Periasamy N., Verkman A. S. Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion. Biophys J. 1998 Jul;75(1):557–567. doi: 10.1016/S0006-3495(98)77545-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simson R., Sheets E. D., Jacobson K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J. 1995 Sep;69(3):989–993. doi: 10.1016/S0006-3495(95)79972-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struck D. K., Pagano R. E. Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J Biol Chem. 1980 Jun 10;255(11):5404–5410. [PubMed] [Google Scholar]
- Stryer L., Thomas D. D., Meares C. F. Diffusion-enhanced fluorescence energy transfer. Annu Rev Biophys Bioeng. 1982;11:203–222. doi: 10.1146/annurev.bb.11.060182.001223. [DOI] [PubMed] [Google Scholar]
- Szmacinski H., Terpetschnig E., Lakowicz J. R. Synthesis and evaluation of Ru-complexes as anisotropy probes for protein hydrodynamics and immunoassays of high-molecular-weight antigens. Biophys Chem. 1996 Nov 29;62(1-3):109–120. doi: 10.1016/s0301-4622(96)02199-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanhuanpä K., Somerharju P. gamma-cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies. J Biol Chem. 1999 Dec 10;274(50):35359–35366. doi: 10.1074/jbc.274.50.35359. [DOI] [PubMed] [Google Scholar]
- Terpetschnig E., Dattelbaum J. D., Szmacinski H., Lakowicz J. R. Synthesis and spectral characterization of a thiol-reactive long-lifetime Ru(II) complex. Anal Biochem. 1997 Sep 5;251(2):241–245. doi: 10.1006/abio.1997.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terpetschnig E., Szmacinski H., Malak H., Lakowicz J. R. Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics. Biophys J. 1995 Jan;68(1):342–350. doi: 10.1016/S0006-3495(95)80193-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D. D., Carlsen W. F., Stryer L. Fluorescence energy transfer in the rapid-diffusion limit. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5746–5750. doi: 10.1073/pnas.75.12.5746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D. D., Stryer L. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes. J Mol Biol. 1982 Jan 5;154(1):145–157. doi: 10.1016/0022-2836(82)90422-3. [DOI] [PubMed] [Google Scholar]
- Thompson T. E., Sankaram M. B., Biltonen R. L., Marsh D., Vaz W. L. Effects of domain structure on in-plane reactions and interactions. Mol Membr Biol. 1995 Jan-Mar;12(1):157–162. doi: 10.3109/09687689509038512. [DOI] [PubMed] [Google Scholar]
- Tocanne J. F., Dupou-Cézanne L., Lopez A. Lateral diffusion of lipids in model and natural membranes. Prog Lipid Res. 1994;33(3):203–237. doi: 10.1016/0163-7827(94)90027-2. [DOI] [PubMed] [Google Scholar]
- Tyson Daniel S., Castellano Felix N. Light-Harvesting Arrays with Coumarin Donors and MLCT Acceptors. Inorg Chem. 1999 Oct 4;38(20):4382–4383. doi: 10.1021/ic9905300. [DOI] [PubMed] [Google Scholar]
- Velez M., Axelrod D. Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes. Biophys J. 1988 Apr;53(4):575–591. doi: 10.1016/S0006-3495(88)83137-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walther D., Kuzmin P., Donath E. Brownian dynamics simulation of the lateral distribution of charged membrane components. Eur Biophys J. 1996;24(3):125–135. doi: 10.1007/BF00180269. [DOI] [PubMed] [Google Scholar]
- Wolber P. K., Hudson B. S. An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J. 1979 Nov;28(2):197–210. doi: 10.1016/S0006-3495(79)85171-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang F., Lee G. M., Jacobson K. Protein lateral mobility as a reflection of membrane microstructure. Bioessays. 1993 Sep;15(9):579–588. doi: 10.1002/bies.950150903. [DOI] [PubMed] [Google Scholar]
- Zucker S. D. Kinetic model of protein-mediated ligand transport: influence of soluble binding proteins on the intermembrane diffusion of a fluorescent fatty acid. Biochemistry. 2001 Jan 30;40(4):977–986. doi: 10.1021/bi001277e. [DOI] [PubMed] [Google Scholar]