Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1396–1404. doi: 10.1016/S0006-3495(02)75494-5

Nuclear Overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes.

Scott E Feller 1, Christopher A Brown 1, David T Nizza 1, Klaus Gawrisch 1
PMCID: PMC1301941  PMID: 11867455

Abstract

Measurement of nuclear Overhauser enhancement spectroscopy cross-relaxation rates between ethanol and palmitoyloleoylphosphatidylcholine bilayers was combined with atomic-level molecular dynamics simulations. The molecular dynamics trajectories yielded autocorrelation functions of proton dipole-dipole interactions, and, consequently, relaxation times and cross-relaxation rates. These analyses allow the measured cross-relaxation rates to be interpreted in terms of relative interaction strengths with the various segments of the lipid molecule. We determined that cross-relaxation between ethanol and specific lipid resonances is primarily determined by the sites of interaction with some modulation due to lipid disorder and to local differences in intramolecular lipid dynamics. The rates scale linearly with the lifetime of temporary ethanol-lipid associations. Ethanol interacts with palmitoyloleoylphosphatidylcholine bilayers primarily via hydrophilic interactions, in particular the formation of hydrogen bonds to the lipid phosphate group. There is a weak contribution to binding from hydrophobic interaction with lipid chain segments near the glycerol. However, the strength of hydrophobic interactions is insufficient to compensate for the energetic loss of locating ethanol in an exclusively hydrophobic environment, resulting in a probability of locating ethanol in the bilayer center that is three orders of magnitude lower than locating ethanol at the lipid/water interface. The low cross-relaxation rates between terminal methyl protons of hydrocarbon chains and ethanol are as much the result of infrequent chain upturns as of brief excursions of ethanol into the region of lipid hydrocarbon chains near the glycerol. The combination of nuclear magnetic resonance measurements and molecular dynamics simulations offers a general pathway to study the interaction of small molecules with the lipid matrix at atomic resolution.

Full Text

The Full Text of this article is available as a PDF (286.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armen R. S., Uitto O. D., Feller S. E. Phospholipid component volumes: determination and application to bilayer structure calculations. Biophys J. 1998 Aug;75(2):734–744. doi: 10.1016/S0006-3495(98)77563-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry J. A., Gawrisch K. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry. 1994 Jul 5;33(26):8082–8088. doi: 10.1021/bi00192a013. [DOI] [PubMed] [Google Scholar]
  3. Barry J. A., Gawrisch K. Effects of ethanol on lipid bilayers containing cholesterol, gangliosides, and sphingomyelin. Biochemistry. 1995 Jul 11;34(27):8852–8860. doi: 10.1021/bi00027a037. [DOI] [PubMed] [Google Scholar]
  4. Boggs J. M., Tümmler B. Interdigitated gel phase bilayers formed by unsaturated synthetic and bacterial glycerolipids in the presence of polymyxin B and glycerol. Biochim Biophys Acta. 1993 Jan 18;1145(1):42–50. doi: 10.1016/0005-2736(93)90379-e. [DOI] [PubMed] [Google Scholar]
  5. Chiou J. S., Ma S. M., Kamaya H., Ueda I. Anesthesia cutoff phenomenon: interfacial hydrogen bonding. Science. 1990 May 4;248(4955):583–585. doi: 10.1126/science.2159183. [DOI] [PubMed] [Google Scholar]
  6. Essmann U., Berkowitz M. L. Dynamical properties of phospholipid bilayers from computer simulation. Biophys J. 1999 Apr;76(4):2081–2089. doi: 10.1016/S0006-3495(99)77364-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feller S. E., Yin D., Pastor R. W., MacKerell A. D., Jr Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J. 1997 Nov;73(5):2269–2279. doi: 10.1016/S0006-3495(97)78259-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holte L. L., Gawrisch K. Determining ethanol distribution in phospholipid multilayers with MAS-NOESY spectra. Biochemistry. 1997 Apr 15;36(15):4669–4674. doi: 10.1021/bi9626416. [DOI] [PubMed] [Google Scholar]
  10. Holte L. L., Peter S. A., Sinnwell T. M., Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys J. 1995 Jun;68(6):2396–2403. doi: 10.1016/S0006-3495(95)80422-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys. 1985 Mar;31(3):1695–1697. doi: 10.1103/physreva.31.1695. [DOI] [PubMed] [Google Scholar]
  12. Klemm W. R. Dehydration: a new alcohol theory. Alcohol. 1990 Jan-Feb;7(1):49–59. doi: 10.1016/0741-8329(90)90060-p. [DOI] [PubMed] [Google Scholar]
  13. Klemm W. R., Williams H. J. Amphiphilic binding site of ethanol in reversed lipid micelles. Alcohol. 1996 Mar-Apr;13(2):133–138. doi: 10.1016/0741-8329(95)02024-1. [DOI] [PubMed] [Google Scholar]
  14. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lafleur M., Fine B., Sternin E., Cullis P. R., Bloom M. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J. 1989 Nov;56(5):1037–1041. doi: 10.1016/S0006-3495(89)82749-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mihic S. J., Ye Q., Wick M. J., Koltchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997 Sep 25;389(6649):385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
  17. Mitchell D. C., Litman B. J. Effect of ethanol and osmotic stress on receptor conformation. Reduced water activity amplifies the effect of ethanol on metarhodopsin II formation. J Biol Chem. 2000 Feb 25;275(8):5355–5360. doi: 10.1074/jbc.275.8.5355. [DOI] [PubMed] [Google Scholar]
  18. doi: 10.1136/ard.60.2.105. [DOI] [PMC free article] [Google Scholar]
  19. Slater S. J., Ho C., Taddeo F. J., Kelly M. B., Stubbs C. D. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Biochemistry. 1993 Apr 13;32(14):3714–3721. doi: 10.1021/bi00065a025. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES