Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1405–1417. doi: 10.1016/S0006-3495(02)75495-7

Characterization of the thermotropic behavior and lateral organization of lipid-peptide mixtures by a combined experimental and theoretical approach: effects of hydrophobic mismatch and role of flanking residues.

Sven Morein 1, J Antoinette Killian 1, Maria Maddalena Sperotto 1
PMCID: PMC1301942  PMID: 11867456

Abstract

A combined experimental and theoretical study was performed on a series of mixtures of dipalmitoylphosphatidylcholine (DPPC) and synthetic peptides to investigate their thermotropic behavior and lateral organization. The experimental study was based on differential scanning calorimetry (DSC) and phosphorous nuclear magnetic resonance ((31)P-NMR) techniques; the theoretical study was based on calculations on a microscopic molecular interaction model, where the lipid-peptide interaction is built on the hydrophobic matching principle. The chosen peptides, WALP and KALP, consist of a hydrophobic stretch, of variable length, of alternating leucine and alanine residues, flanked on both ends with tryptophan and lysine residues, respectively. By systematically varying the peptide hydrophobic length it was thus possible to explore different matching conditions between the peptide's hydrophobic length and the lipid bilayer hydrophobic thickness, and to investigate the potential role of flanking residues. The results show that both the WALP and the KALP peptides tend to favor the liquid-crystalline (or fluid) phase of the system; i.e., they tend to depress the main-transition temperature, T(m), of pure DPPC. However, the detailed effects of both peptides on the lateral phase behavior of the lipid-peptide system are dependent on the peptide length and the type of flanking residues. The results suggest that below T(m), the shortest among the WALP and KALP peptides induce gel-fluid phase separation in the system within an extensive temperature-composition region. The longer the hydrophobic length of the peptides is, the more narrow this region appears to become.

Full Text

The Full Text of this article is available as a PDF (263.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bretscher M. S., Munro S. Cholesterol and the Golgi apparatus. Science. 1993 Sep 3;261(5126):1280–1281. doi: 10.1126/science.8362242. [DOI] [PubMed] [Google Scholar]
  2. Cornea R. L., Thomas D. D. Effects of membrane thickness on the molecular dynamics and enzymatic activity of reconstituted Ca-ATPase. Biochemistry. 1994 Mar 15;33(10):2912–2920. doi: 10.1021/bi00176a022. [DOI] [PubMed] [Google Scholar]
  3. Datema K. P., Pauls K. P., Bloom M. Deuterium nuclear magnetic resonance investigation of the exchangeable sites on gramicidin A and gramicidin S in multilamellar vesicles of dipalmitoylphosphatidylcholine. Biochemistry. 1986 Jul 1;25(13):3796–3803. doi: 10.1021/bi00361a010. [DOI] [PubMed] [Google Scholar]
  4. Garab G., Lohner K., Laggner P., Farkas T. Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci. 2000 Nov;5(11):489–494. doi: 10.1016/s1360-1385(00)01767-2. [DOI] [PubMed] [Google Scholar]
  5. Gil T., Ipsen J. H., Mouritsen O. G., Sabra M. C., Sperotto M. M., Zuckermann M. J. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):245–266. doi: 10.1016/s0304-4157(98)00022-7. [DOI] [PubMed] [Google Scholar]
  6. Greathouse D. V., Goforth R. L., Crawford T., Van Der Wel P. C., Killian J. A. Optimized aminolysis conditions for cleavage of N-protected hydrophobic peptides from solid-phase resins. J Pept Res. 2001 Jun;57(6):519–527. doi: 10.1034/j.1399-3011.2001.00849.x. [DOI] [PubMed] [Google Scholar]
  7. Harzer U., Bechinger B. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Biochemistry. 2000 Oct 31;39(43):13106–13114. doi: 10.1021/bi000770n. [DOI] [PubMed] [Google Scholar]
  8. Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
  9. Killian J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):401–415. doi: 10.1016/s0304-4157(98)00017-3. [DOI] [PubMed] [Google Scholar]
  10. Killian J. A., Salemink I., de Planque M. R., Lindblom G., Koeppe R. E., 2nd, Greathouse D. V. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry. 1996 Jan 23;35(3):1037–1045. doi: 10.1021/bi9519258. [DOI] [PubMed] [Google Scholar]
  11. Killian J. A., de Kruijff B. Thermodynamic, motional, and structural aspects of gramicidin-induced hexagonal HII phase formation in phosphatidylethanolamine. Biochemistry. 1985 Dec 31;24(27):7881–7890. doi: 10.1021/bi00348a006. [DOI] [PubMed] [Google Scholar]
  12. Killian J. A., von Heijne G. How proteins adapt to a membrane-water interface. Trends Biochem Sci. 2000 Sep;25(9):429–434. doi: 10.1016/s0968-0004(00)01626-1. [DOI] [PubMed] [Google Scholar]
  13. Kobayashi Y., Fukada K. Characterization of swollen lamellar phase of dimyristoylphosphatidylcholine-gramicidin A mixed membranes by DSC, SAXS, and densimetry. Biochim Biophys Acta. 1998 May 28;1371(2):363–370. doi: 10.1016/s0005-2736(98)00043-1. [DOI] [PubMed] [Google Scholar]
  14. Landolt-Marticorena C., Williams K. A., Deber C. M., Reithmeier R. A. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J Mol Biol. 1993 Feb 5;229(3):602–608. doi: 10.1006/jmbi.1993.1066. [DOI] [PubMed] [Google Scholar]
  15. Lewis R. N., Mak N., McElhaney R. N. A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry. 1987 Sep 22;26(19):6118–6126. doi: 10.1021/bi00393a026. [DOI] [PubMed] [Google Scholar]
  16. Liu F., Lewis R. N., Hodges R. S., McElhaney R. N. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Biochemistry. 2001 Jan 23;40(3):760–768. doi: 10.1021/bi001942j. [DOI] [PubMed] [Google Scholar]
  17. Loura L. M., Fedorov A., Prieto M. Partition of membrane probes in a gel/fluid two-component lipid system: a fluorescence resonance energy transfer study. Biochim Biophys Acta. 2000 Jul 31;1467(1):101–112. doi: 10.1016/s0005-2736(00)00211-x. [DOI] [PubMed] [Google Scholar]
  18. Montecucco C., Smith G. A., Dabbeni-sala F., Johannsson A., Galante Y. M., Bisson R. Bilayer thickness and enzymatic activity in the mitochondrial cytochrome c oxidase and ATPase complex. FEBS Lett. 1982 Jul 19;144(1):145–148. doi: 10.1016/0014-5793(82)80588-7. [DOI] [PubMed] [Google Scholar]
  19. Morein S., Koeppe II R. E., Lindblom G., de Kruijff B., Killian J. A. The effect of peptide/lipid hydrophobic mismatch on the phase behavior of model membranes mimicking the lipid composition in Escherichia coli membranes. Biophys J. 2000 May;78(5):2475–2485. doi: 10.1016/s0006-3495(00)76792-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morein S., Strandberg E., Killian J. A., Persson S., Arvidson G., Koeppe R. E., 2nd, Lindblom G. Influence of membrane-spanning alpha-helical peptides on the phase behavior of the dioleoylphosphatidylcholine/water system. Biophys J. 1997 Dec;73(6):3078–3088. doi: 10.1016/S0006-3495(97)78335-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morrow M. R., Davis J. H. Differential scanning calorimetry and 2H NMR studies of the phase behavior of gramicidin-phosphatidylcholine mixtures. Biochemistry. 1988 Mar 22;27(6):2024–2032. doi: 10.1021/bi00406a032. [DOI] [PubMed] [Google Scholar]
  22. Morrow M. R., Davis J. H., Sharom F. J., Lamb M. P. Studies on the interaction of human erythrocyte band 3 with membrane lipids using deuterium nuclear magnetic resonance and differential scanning calorimetry. Biochim Biophys Acta. 1986 Jun 13;858(1):13–20. doi: 10.1016/0005-2736(86)90286-5. [DOI] [PubMed] [Google Scholar]
  23. Morrow M. R., Huschilt J. C., Davis J. H. Simultaneous modeling of phase and calorimetric behavior in an amphiphilic peptide/phospholipid model membrane. Biochemistry. 1985 Sep 24;24(20):5396–5406. doi: 10.1021/bi00341a018. [DOI] [PubMed] [Google Scholar]
  24. Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mouritsen O. G., Dammann B., Fogedby H. C., Ipsen J. H., Jeppesen C., Jørgensen K., Risbo J., Sabra M. C., Sperotto M. M., Zuckermann M. J. The computer as a laboratory for the physical chemistry of membranes. Biophys Chem. 1995 Jun-Jul;55(1-2):55–68. doi: 10.1016/0301-4622(94)00142-7. [DOI] [PubMed] [Google Scholar]
  26. Munro S. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 1998 Jan;8(1):11–15. doi: 10.1016/S0962-8924(97)01197-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pedersen T. B., Sabra M. C., Frokjaer S., Mouritsen O. G., Jørgensen K. Association of acylated cationic decapeptides with dipalmitoylphosphatidylserine-dipalmitoylphosphatidylcholine lipid membranes. Chem Phys Lipids. 2001 Nov;113(1-2):83–95. doi: 10.1016/s0009-3084(01)00177-3. [DOI] [PubMed] [Google Scholar]
  28. Persson S., Killian J. A., Lindblom G. Molecular ordering of interfacially localized tryptophan analogs in ester- and ether-lipid bilayers studied by 2H-NMR. Biophys J. 1998 Sep;75(3):1365–1371. doi: 10.1016/s0006-3495(98)74054-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pink D. A., Green T. J., Chapman D. Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry. 1980 Jan 22;19(2):349–356. doi: 10.1021/bi00543a016. [DOI] [PubMed] [Google Scholar]
  30. Reithmeier R. A. Characterization and modeling of membrane proteins using sequence analysis. Curr Opin Struct Biol. 1995 Aug;5(4):491–500. doi: 10.1016/0959-440x(95)80034-4. [DOI] [PubMed] [Google Scholar]
  31. Ridder A. N., Morein S., Stam J. G., Kuhn A., de Kruijff B., Killian J. A. Analysis of the role of interfacial tryptophan residues in controlling the topology of membrane proteins. Biochemistry. 2000 May 30;39(21):6521–6528. doi: 10.1021/bi000073v. [DOI] [PubMed] [Google Scholar]
  32. Riegler J., Möhwald H. Elastic interactions of photosynthetic reaction center proteins affecting phase transitions and protein distributions. Biophys J. 1986 Jun;49(6):1111–1118. doi: 10.1016/S0006-3495(86)83740-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rinia H. A., Kik R. A., Demel R. A., Snel M. M., Killian J. A., van Der Eerden J. P., de Kruijff B. Visualization of highly ordered striated domains induced by transmembrane peptides in supported phosphatidylcholine bilayers. Biochemistry. 2000 May 16;39(19):5852–5858. doi: 10.1021/bi000010c. [DOI] [PubMed] [Google Scholar]
  34. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  35. Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
  36. Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  37. Sperotto M. M., Ipsen J. H., Mouritsen O. G. Theory of protein-induced lateral phase separation in lipid membranes. Cell Biophys. 1989 Feb;14(1):79–95. doi: 10.1007/BF02797393. [DOI] [PubMed] [Google Scholar]
  38. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
  39. Wallin E., Tsukihara T., Yoshikawa S., von Heijne G., Elofsson A. Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci. 1997 Apr;6(4):808–815. doi: 10.1002/pro.5560060407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yau W. M., Wimley W. C., Gawrisch K., White S. H. The preference of tryptophan for membrane interfaces. Biochemistry. 1998 Oct 20;37(42):14713–14718. doi: 10.1021/bi980809c. [DOI] [PubMed] [Google Scholar]
  41. Zhang Y. P., Lewis R. N., Henry G. D., Sykes B. D., Hodges R. S., McElhaney R. N. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 1. Studies of the conformation, intrabilayer orientation, and amide hydrogen exchangeability of Ac-K2-(LA)12-K2-amide. Biochemistry. 1995 Feb 21;34(7):2348–2361. doi: 10.1021/bi00007a031. [DOI] [PubMed] [Google Scholar]
  42. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. Biochemistry. 1992 Nov 24;31(46):11579–11588. doi: 10.1021/bi00161a042. [DOI] [PubMed] [Google Scholar]
  43. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 2. Differential scanning calorimetric and FTIR spectroscopic studies of the interaction of Ac-K2-(LA)12-K2-amide with phosphatidylcholine bilayers. Biochemistry. 1995 Feb 21;34(7):2362–2371. doi: 10.1021/bi00007a032. [DOI] [PubMed] [Google Scholar]
  44. Zhang Z., Sperotto M. M., Zuckermann M. J., Mouritsen O. G. A microscopic model for lipid/protein bilayers with critical mixing. Biochim Biophys Acta. 1993 Apr 8;1147(1):154–160. doi: 10.1016/0005-2736(93)90326-u. [DOI] [PubMed] [Google Scholar]
  45. de Planque M. R., Goormaghtigh E., Greathouse D. V., Koeppe R. E., 2nd, Kruijtzer J. A., Liskamp R. M., de Kruijff B., Killian J. A. Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry. 2001 Apr 24;40(16):5000–5010. doi: 10.1021/bi000804r. [DOI] [PubMed] [Google Scholar]
  46. de Planque M. R., Greathouse D. V., Koeppe R. E., 2nd, Schäfer H., Marsh D., Killian J. A. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry. 1998 Jun 30;37(26):9333–9345. doi: 10.1021/bi980233r. [DOI] [PubMed] [Google Scholar]
  47. de Planque M. R., Kruijtzer J. A., Liskamp R. M., Marsh D., Greathouse D. V., Koeppe R. E., 2nd, de Kruijff B., Killian J. A. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. J Biol Chem. 1999 Jul 23;274(30):20839–20846. doi: 10.1074/jbc.274.30.20839. [DOI] [PubMed] [Google Scholar]
  48. van der Wel P. C., Pott T., Morein S., Greathouse D. V., Koeppe R. E., 2nd, Killian J. A. Tryptophan-anchored transmembrane peptides promote formation of nonlamellar phases in phosphatidylethanolamine model membranes in a mismatch-dependent manner. Biochemistry. 2000 Mar 21;39(11):3124–3133. doi: 10.1021/bi9922594. [DOI] [PubMed] [Google Scholar]
  49. von Heijne G. Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct. 1994;23:167–192. doi: 10.1146/annurev.bb.23.060194.001123. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES