Abstract
The transbilayer movement and distribution of spin-labeled analogs of the steroids androstane (SLA) and cholestane (SLC) were investigated in the human erythrocyte and in liposomes. Membranes were labeled with SLA or SLC, and the analogs in the outer leaflet were selectively reduced at 4C using 6-O-phenylascorbic acid. As shown previously, 6-O-phenylascorbic acid reduces rapidly nitroxides exposed on the outer leaflet, but its permeation of membranes is comparatively slow and thus does not interfere with the assay. From the reduction kinetics, we infer that transbilayer movement of SLA in erythrocytes is rapid at 4C with a half-time of approximately 4.3 min and that the probe distributes almost symmetrically between both halves of the plasma membrane. We have no indication that a protein-mediated transport is involved in the rapid transbilayer movement of SLA because 1) pretreatment of erythrocytes with N-ethyl maleimide affected neither flip-flop nor transbilayer distribution of SLA and 2) flip-flop of SLA was also rapid in pure lipid membranes. The transbilayer dynamics of SLC in erythrocyte membranes could not be resolved by our assay. Thus, the rate of SLC flip-flop must be on the order of, or even faster than, that of probe reduction rate on the exoplasmic leaflet (half-time approximately 0.5 min). The results are discussed with regard to the transbilayer dynamics of cholesterol.
Full Text
The Full Text of this article is available as a PDF (217.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Blau L., Bittman R. Cholesterol distribution between the two halves of the lipid bilayer of human erythrocyte ghost membranes. J Biol Chem. 1978 Dec 10;253(23):8366–8368. [PubMed] [Google Scholar]
- Boesze-Battaglia K., Clayton S. T., Schimmel R. J. Cholesterol redistribution within human platelet plasma membrane: evidence for a stimulus-dependent event. Biochemistry. 1996 May 28;35(21):6664–6673. doi: 10.1021/bi951846w. [DOI] [PubMed] [Google Scholar]
- Brasaemle D. L., Robertson A. D., Attie A. D. Transbilayer movement of cholesterol in the human erythrocyte membrane. J Lipid Res. 1988 Apr;29(4):481–489. [PubMed] [Google Scholar]
- Buton X., Morrot G., Fellmann P., Seigneuret M. Ultrafast glycerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane. J Biol Chem. 1996 Mar 22;271(12):6651–6657. doi: 10.1074/jbc.271.12.6651. [DOI] [PubMed] [Google Scholar]
- Calvez J. Y., Zachowski A., Herrmann A., Morrot G., Devaux P. F. Asymmetric distribution of phospholipids in spectrin-poor erythrocyte vesicles. Biochemistry. 1988 Jul 26;27(15):5666–5670. doi: 10.1021/bi00415a041. [DOI] [PubMed] [Google Scholar]
- Chattopadhyay A., London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 1987 Jan 13;26(1):39–45. doi: 10.1021/bi00375a006. [DOI] [PubMed] [Google Scholar]
- Daveloose D., Fabre G., Berleur F., Testylier G., Leterrier F. A new spin label method for the measurement of erythrocyte internal microviscosity. Biochim Biophys Acta. 1983 Aug 17;763(1):41–49. doi: 10.1016/0167-4889(83)90023-x. [DOI] [PubMed] [Google Scholar]
- Fischer R. T., Cowlen M. S., Dempsey M. E., Schroeder F. Fluorescence of delta 5,7,9(11),22-ergostatetraen-3 beta-ol in micelles, sterol carrier protein complexes, and plasma membranes. Biochemistry. 1985 Jun 18;24(13):3322–3331. doi: 10.1021/bi00334a037. [DOI] [PubMed] [Google Scholar]
- Fisher K. A. Analysis of membrane halves: cholesterol. Proc Natl Acad Sci U S A. 1976 Jan;73(1):173–177. doi: 10.1073/pnas.73.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gliss C., Randel O., Casalta H., Sackmann E., Zorn R., Bayerl T. Anisotropic motion of cholesterol in oriented DPPC bilayers studied by quasielastic neutron scattering: the liquid-ordered phase. Biophys J. 1999 Jul;77(1):331–340. doi: 10.1016/S0006-3495(99)76893-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grover A. K., Forrest B. J., Buchinski R. K., Cushley R. J. ESR studies on the orientation of cholesteryl ester in phosphatidylcholine multilayers. Biochim Biophys Acta. 1979 Jan 19;550(2):212–221. doi: 10.1016/0005-2736(79)90208-6. [DOI] [PubMed] [Google Scholar]
- Hapala I., Kavecansky J., Butko P., Scallen T. J., Joiner C. H., Schroeder F. Regulation of membrane cholesterol domains by sterol carrier protein-2. Biochemistry. 1994 Jun 21;33(24):7682–7690. doi: 10.1021/bi00190a023. [DOI] [PubMed] [Google Scholar]
- Heinrich R., Brumen M., Jaeger A., Müller P., Herrmann A. Modelling of phospholipid translocation in the erythrocyte membrane: a combined kinetic and thermodynamic approach. J Theor Biol. 1997 Apr 7;185(3):295–312. doi: 10.1006/jtbi.1996.0325. [DOI] [PubMed] [Google Scholar]
- Herrmann A., Zachowski A., Devaux P. F. Protein-mediated phospholipid translocation in the endoplasmic reticulum with a low lipid specificity. Biochemistry. 1990 Feb 27;29(8):2023–2027. doi: 10.1021/bi00460a010. [DOI] [PubMed] [Google Scholar]
- Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry. 1998 Dec 8;37(49):17299–17308. doi: 10.1021/bi980078g. [DOI] [PubMed] [Google Scholar]
- Klucken J., Büchler C., Orsó E., Kaminski W. E., Porsch-Ozcürümez M., Liebisch G., Kapinsky M., Diederich W., Drobnik W., Dean M. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):817–822. doi: 10.1073/pnas.97.2.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange Y., Cohen C. M., Poznansky M. J. Transmembrane movement of cholesterol in human erythrocytes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1538–1542. doi: 10.1073/pnas.74.4.1538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange Y., Dolde J., Steck T. L. The rate of transmembrane movement of cholesterol in the human erythrocyte. J Biol Chem. 1981 Jun 10;256(11):5321–5323. [PubMed] [Google Scholar]
- Lange Y. The dynamics of erythrocyte membrane cholesterol. Prog Clin Biol Res. 1984;159:137–151. [PubMed] [Google Scholar]
- Leventis R., Silvius J. R. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J. 2001 Oct;81(4):2257–2267. doi: 10.1016/S0006-3495(01)75873-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marx U., Lassmann G., Holzhütter H. G., Wüstner D., Müller P., Höhlig A., Kubelt J., Herrmann A. Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach. Biophys J. 2000 May;78(5):2628–2640. doi: 10.1016/S0006-3495(00)76807-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marx U., Lassmann G., Wimalasena K., Müller P., Herrmann A. Rapid kinetics of insertion and accessibility of spin-labeled phospholipid analogs in lipid membranes: a stopped-flow electron paramagnetic resonance approach. Biophys J. 1997 Sep;73(3):1645–1654. doi: 10.1016/S0006-3495(97)78196-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menon A. K., Watkins WE3rd, Hrafnsdóttir S. Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum. Curr Biol. 2000 Mar 9;10(5):241–252. doi: 10.1016/s0960-9822(00)00356-0. [DOI] [PubMed] [Google Scholar]
- Morrot G., Bureau J. F., Roux M., Maurin L., Favre E., Devaux P. F. Orientation and vertical fluctuations of spin-labeled analogues of cholesterol and androstanol in phospholipid bilayers. Biochim Biophys Acta. 1987 Feb 26;897(2):341–345. doi: 10.1016/0005-2736(87)90431-7. [DOI] [PubMed] [Google Scholar]
- Morrot G., Hervé P., Zachowski A., Fellmann P., Devaux P. F. Aminophospholipid translocase of human erythrocytes: phospholipid substrate specificity and effect of cholesterol. Biochemistry. 1989 Apr 18;28(8):3456–3462. doi: 10.1021/bi00434a046. [DOI] [PubMed] [Google Scholar]
- Mukherjee S., Chattopadhyay A. Membrane organization at low cholesterol concentrations: a study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry. 1996 Jan 30;35(4):1311–1322. doi: 10.1021/bi951953q. [DOI] [PubMed] [Google Scholar]
- Mukherjee S., Zha X., Tabas I., Maxfield F. R. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 1998 Oct;75(4):1915–1925. doi: 10.1016/S0006-3495(98)77632-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
- Schreier-Muccillo S., Marsh D., Smith I. C. Monitoring the permeability profile of lipid membranes with spin probes. Arch Biochem Biophys. 1976 Jan;172(1):1–11. doi: 10.1016/0003-9861(76)90041-2. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Frolov A. A., Murphy E. J., Atshaves B. P., Jefferson J. R., Pu L., Wood W. G., Foxworth W. B., Kier A. B. Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc Soc Exp Biol Med. 1996 Nov;213(2):150–177. doi: 10.3181/00379727-213-44047. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Nemecz G. Interaction of sphingomyelins and phosphatidylcholines with fluorescent dehydroergosterol. Biochemistry. 1989 Jul 11;28(14):5992–6000. doi: 10.1021/bi00440a041. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Nemecz G., Wood W. G., Joiner C., Morrot G., Ayraut-Jarrier M., Devaux P. F. Transmembrane distribution of sterol in the human erythrocyte. Biochim Biophys Acta. 1991 Jul 22;1066(2):183–192. doi: 10.1016/0005-2736(91)90185-b. [DOI] [PubMed] [Google Scholar]
- Schroeder F. Role of membrane lipid asymmetry in aging. Neurobiol Aging. 1984 Winter;5(4):323–333. doi: 10.1016/0197-4580(84)90010-1. [DOI] [PubMed] [Google Scholar]
- Schroeder F. Use of a fluorescent sterol to probe the transbilayer distribution of sterols in biological membranes. FEBS Lett. 1981 Nov 30;135(1):127–130. doi: 10.1016/0014-5793(81)80959-3. [DOI] [PubMed] [Google Scholar]
- Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3751–3755. doi: 10.1073/pnas.81.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. D., Poznansky M. J. Curvature and composition-dependent lipid asymmetry in phosphatidylcholine vesicles containing phosphatidylethanolamine and gangliosides. Biochim Biophys Acta. 1989 Jan 16;978(1):85–90. doi: 10.1016/0005-2736(89)90502-6. [DOI] [PubMed] [Google Scholar]
- Thurnhofer H., Gains N., Mütsch B., Hauser H. Cholesterol oxidase as a structural probe of biological membranes: its application to brush-border membrane. Biochim Biophys Acta. 1986 Mar 27;856(1):174–181. doi: 10.1016/0005-2736(86)90024-6. [DOI] [PubMed] [Google Scholar]
- Zachowski A., Favre E., Cribier S., Hervé P., Devaux P. F. Outside-inside translocation of aminophospholipids in the human erythrocyte membrane is mediated by a specific enzyme. Biochemistry. 1986 May 6;25(9):2585–2590. doi: 10.1021/bi00357a046. [DOI] [PubMed] [Google Scholar]
