Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1453–1459. doi: 10.1016/S0006-3495(02)75499-4

Direct observation of poloxamer 188 insertion into lipid monolayers.

Stacey A Maskarinec 1, Jürgen Hannig 1, Raphael C Lee 1, Ka Yee C Lee 1
PMCID: PMC1301946  PMID: 11867460

Abstract

P188, a triblock copolymer of the form poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) helps seal electroporated cell membranes, arresting the leakage of intracellular materials from the damaged cells. To explore the nature of the interaction between P188 and cell membranes, we have constructed a model system that assesses the ability of P188 to insert into lipid monolayers. Using concurrent Langmuir isotherm and fluorescence microscopy measurements, we find that P188 changes the phase behavior and morphology of the monolayers. P188 inserts into both dipalmitoylphosphatidlycholine and dipalmitoylphosphatidylglycerol monolayers at surface pressures equal to and lower than approximately 22 mN/m at 30 degrees C; this pressure corresponds to the maximal surface pressure attained by P188 on a pure water subphase. Similar results for the two phospholipids indicate that P188 insertion is not influenced by headgroup electrostatics. Because the equivalent surface pressure of a normal bilayer is on the order of 30 mN/m, the lack of P188 insertion above 22 mN/m further suggests the poloxamer selectively adsorbs into damaged portions of electroporated membranes, thereby localizing its effect. P188 is also found to be "squeezed out" of the monolayers at high surface pressures, suggesting a mechanism for the cell to be rid of the poloxamer when the membrane is restored.

Full Text

The Full Text of this article is available as a PDF (152.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhatt D. L., Gaylor D. C., Lee R. C. Rhabdomyolysis due to pulsed electric fields. Plast Reconstr Surg. 1990 Jul;86(1):1–11. doi: 10.1097/00006534-199007000-00001. [DOI] [PubMed] [Google Scholar]
  2. DiVincenti F. C., Moncrief J. A., Pruitt B. A., Jr Electrical injuries: a review of 65 cases. J Trauma. 1969 Jun;9(6):497–507. [PubMed] [Google Scholar]
  3. Hannig J., Zhang D., Canaday D. J., Beckett M. A., Astumian R. D., Weichselbaum R. R., Lee R. C. Surfactant sealing of membranes permeabilized by ionizing radiation. Radiat Res. 2000 Aug;154(2):171–177. doi: 10.1667/0033-7587(2000)154[0171:ssompb]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  4. Lee R. C., Gaylor D. C., Bhatt D., Israel D. A. Role of cell membrane rupture in the pathogenesis of electrical trauma. J Surg Res. 1988 Jun;44(6):709–719. doi: 10.1016/0022-4804(88)90105-9. [DOI] [PubMed] [Google Scholar]
  5. Lee R. C., Kolodney M. S. Electrical injury mechanisms: dynamics of the thermal response. Plast Reconstr Surg. 1987 Nov;80(5):663–671. [PubMed] [Google Scholar]
  6. Lee R. C., Kolodney M. S. Electrical injury mechanisms: electrical breakdown of cell membranes. Plast Reconstr Surg. 1987 Nov;80(5):672–679. doi: 10.1097/00006534-198711000-00002. [DOI] [PubMed] [Google Scholar]
  7. Lee R. C., Myerov A., Maloney C. P. Promising therapy for cell membrane damage. Ann N Y Acad Sci. 1994 May 31;720:239–245. doi: 10.1111/j.1749-6632.1994.tb30453.x. [DOI] [PubMed] [Google Scholar]
  8. Lee R. C., River L. P., Pan F. S., Ji L., Wollmann R. L. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4524–4528. doi: 10.1073/pnas.89.10.4524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Matsuura Y., Najib A., Lee W. H., Jr Pulmonary compliance and surfactant activity in thermal burn. Surg Forum. 1966;17:86–88. [PubMed] [Google Scholar]
  10. Merchant F. A., Holmes W. H., Capelli-Schellpfeffer M., Lee R. C., Toner M. Poloxamer 188 enhances functional recovery of lethally heat-shocked fibroblasts. J Surg Res. 1998 Feb 1;74(2):131–140. doi: 10.1006/jsre.1997.5252. [DOI] [PubMed] [Google Scholar]
  11. Möhwald H. Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu Rev Phys Chem. 1990;41:441–476. doi: 10.1146/annurev.pc.41.100190.002301. [DOI] [PubMed] [Google Scholar]
  12. Sharma V., Stebe K., Murphy J. C., Tung L. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation. Biophys J. 1996 Dec;71(6):3229–3241. doi: 10.1016/S0006-3495(96)79516-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stine K. J. Investigations of monolayers by fluorescence microscopy. Microsc Res Tech. 1994 Apr 1;27(5):439–450. doi: 10.1002/jemt.1070270510. [DOI] [PubMed] [Google Scholar]
  14. Terry M. A., Hannig J., Carrillo C. S., Beckett M. A., Weichselbaum R. R., Lee R. C. Oxidative cell membrane alteration. Evidence for surfactant-mediated sealing. Ann N Y Acad Sci. 1999 Oct 30;888:274–284. doi: 10.1111/j.1749-6632.1999.tb07962.x. [DOI] [PubMed] [Google Scholar]
  15. Tropea B. I., Lee R. C. Thermal injury kinetics in electrical trauma. J Biomech Eng. 1992 May;114(2):241–250. doi: 10.1115/1.2891378. [DOI] [PubMed] [Google Scholar]
  16. Weis R. M. Fluorescence microscopy of phospholipid monolayer phase transitions. Chem Phys Lipids. 1991 Mar;57(2-3):227–239. doi: 10.1016/0009-3084(91)90078-p. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES