Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1524–1536. doi: 10.1016/S0006-3495(02)75505-7

Ca(2+)-induced movement of tropomyosin in skeletal muscle thin filaments observed by multi-site FRET.

Corrado Bacchiocchi 1, Sherwin S Lehrer 1
PMCID: PMC1301952  PMID: 11867466

Abstract

To obtain information on Ca(2+)-induced tropomyosin (Tm) movement in Ca(2+)-regulated muscle thin filaments, frequency-domain fluorescence energy transfer data were collected between 5-(2-iodoacetyl-amino-ethyl-amino)naphthalene-1-sulfonic acid at Cys-190 of Tm and phalloidin-tetramethylrhodamine B isothiocyanate bound to F-actin. Two models were used to fit the experimental data: an atomic coordinate (AC) model coupled with a search algorithm that varies the position and orientation of Tm on F-actin, and a double Gaussian distance distribution (DD) model. The AC model showed that little or no change in transfer efficiency is to be expected between different sites on F-actin and Tm if Ca(2+) causes azimuthal movement of Tm of the magnitude suggested by structural data (C. Xu, R. Craig, L. Tobacman, R. Horowitz, and W. Lehman. 1999. Biophys. J. 77:985-992). However, Ca(2+) produced a small but significant change in our phase/modulation versus frequency data, showing that changes in lifetime decay can be detected even when a change of the steady-state transfer efficiency is very small. A change in Tm azimuthal position of 17 on the actin filament obtained with the AC model indicates that solution data are in reasonable agreement with EM image reconstruction data. In addition, the data indicate that Tm also appears to rotate about its axis, resulting in a rolling motion over the F-actin surface. The DD model showed that the distance from one of the two chains of Tm to F-actin was mainly affected, further verifying that Ca(2+) causes Tm to roll over the F-actin surface. The width of the distance distributions indicated that the position of Tm in absence and in presence of Ca(2+) is well defined with appreciable local flexibility.

Full Text

The Full Text of this article is available as a PDF (485.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bremer A., Millonig R. C., Sütterlin R., Engel A., Pollard T. D., Aebi U. The structural basis for the intrinsic disorder of the actin filament: the "lateral slipping" model. J Cell Biol. 1991 Nov;115(3):689–703. doi: 10.1083/jcb.115.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheung H. C., Wang C. K., Gryczynski I., Wiczk W., Laczko G., Johnson M. L., Lakowicz J. R. Distance distributions and anisotropy decays of troponin C and its complex with troponin I. Biochemistry. 1991 May 28;30(21):5238–5247. doi: 10.1021/bi00235a018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heidecker M., Yan-Marriott Y., Marriott G. Proximity relationships and structural dynamics of the phalloidin binding site of actin filaments in solution and on single actin filaments on heavy meromyosin. Biochemistry. 1995 Sep 5;34(35):11017–11025. doi: 10.1021/bi00035a007. [DOI] [PubMed] [Google Scholar]
  4. Lakowicz J. R., Gryczynski I., Cheung H. C., Wang C. K., Johnson M. L., Joshi N. Distance distributions in proteins recovered by using frequency-domain fluorometry. Applications to troponin I and its complex with troponin C. Biochemistry. 1988 Dec 27;27(26):9149–9160. doi: 10.1021/bi00426a012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lakowicz J. R., Gryczyński I., Wiczk W., Kuśba J., Johnson M. L. Correction for incomplete labeling in the measurement of distance distributions by frequency-domain fluorometry. Anal Biochem. 1991 Jun;195(2):243–254. doi: 10.1016/0003-2697(91)90324-m. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lakowicz J. R., Laczko G., Cherek H., Gratton E., Limkeman M. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys J. 1984 Oct;46(4):463–477. doi: 10.1016/S0006-3495(84)84043-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lamkin M., Tao T., Lehrer S. S. Tropomyosin-troponin and tropomyosin-actin interactions: a fluorescence quenching study. Biochemistry. 1983 Jun 21;22(13):3053–3058. doi: 10.1021/bi00282a005. [DOI] [PubMed] [Google Scholar]
  8. Lehman W., Craig R., Vibert P. Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature. 1994 Mar 3;368(6466):65–67. doi: 10.1038/368065a0. [DOI] [PubMed] [Google Scholar]
  9. Lehman W., Hatch V., Korman V., Rosol M., Thomas L., Maytum R., Geeves M. A., Van Eyk J. E., Tobacman L. S., Craig R. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol. 2000 Sep 22;302(3):593–606. doi: 10.1006/jmbi.2000.4080. [DOI] [PubMed] [Google Scholar]
  10. Lehrer S. S., Geeves M. A. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol. 1998 Apr 17;277(5):1081–1089. doi: 10.1006/jmbi.1998.1654. [DOI] [PubMed] [Google Scholar]
  11. Lorenz M., Poole K. J., Popp D., Rosenbaum G., Holmes K. C. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol. 1995 Feb 10;246(1):108–119. doi: 10.1006/jmbi.1994.0070. [DOI] [PubMed] [Google Scholar]
  12. Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
  13. Maytum R., Lehrer S. S., Geeves M. A. Cooperativity and switching within the three-state model of muscle regulation. Biochemistry. 1999 Jan 19;38(3):1102–1110. doi: 10.1021/bi981603e. [DOI] [PubMed] [Google Scholar]
  14. McKillop D. F., Geeves M. A. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J. 1993 Aug;65(2):693–701. doi: 10.1016/S0006-3495(93)81110-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McLachlan A. D., Stewart M. The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol. 1976 May 15;103(2):271–298. doi: 10.1016/0022-2836(76)90313-2. [DOI] [PubMed] [Google Scholar]
  16. Miki M., Miura T., Sano K., Kimura H., Kondo H., Ishida H., Maéda Y. Fluorescence resonance energy transfer between points on tropomyosin and actin in skeletal muscle thin filaments: does tropomyosin move? J Biochem. 1998 Jun;123(6):1104–1111. doi: 10.1093/oxfordjournals.jbchem.a022049. [DOI] [PubMed] [Google Scholar]
  17. Parry D. A., Squire J. M. Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol. 1973 Mar 25;75(1):33–55. doi: 10.1016/0022-2836(73)90527-5. [DOI] [PubMed] [Google Scholar]
  18. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  19. Steinmetz M. O., Stoffler D., Müller S. A., Jahn W., Wolpensinger B., Goldie K. N., Engel A., Faulstich H., Aebi U. Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative. J Mol Biol. 1998 Feb 13;276(1):1–6. doi: 10.1006/jmbi.1997.1529. [DOI] [PubMed] [Google Scholar]
  20. Straume M., Johnson M. L. Monte Carlo method for determining complete confidence probability distributions of estimated model parameters. Methods Enzymol. 1992;210:117–129. doi: 10.1016/0076-6879(92)10009-3. [DOI] [PubMed] [Google Scholar]
  21. Tao T., Lamkin M., Lehrer S. S. Excitation energy transfer studies of the proximity between tropomyosin and actin in reconstituted skeletal muscle thin filaments. Biochemistry. 1983 Jun 21;22(13):3059–3066. doi: 10.1021/bi00282a006. [DOI] [PubMed] [Google Scholar]
  22. Tao T. Nanosecond fluorescence depolarization studies on actin labeled with 1,5-IAEDANS and dansyl chloride. Evidence for label flexibility. FEBS Lett. 1978 Sep 1;93(1):146–150. doi: 10.1016/0014-5793(78)80824-2. [DOI] [PubMed] [Google Scholar]
  23. Tobacman L. S., Butters C. A. A new model of cooperative myosin-thin filament binding. J Biol Chem. 2000 Sep 8;275(36):27587–27593. doi: 10.1074/jbc.M003648200. [DOI] [PubMed] [Google Scholar]
  24. Waggoner A., DeBiasio R., Conrad P., Bright G. R., Ernst L., Ryan K., Nederlof M., Taylor D. Multiple spectral parameter imaging. Methods Cell Biol. 1989;30:449–478. doi: 10.1016/s0091-679x(08)60990-5. [DOI] [PubMed] [Google Scholar]
  25. Xu C., Craig R., Tobacman L., Horowitz R., Lehman W. Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J. 1999 Aug;77(2):985–992. doi: 10.1016/S0006-3495(99)76949-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES