Abstract
The glycosyl torsion (chi) in nucleic acids has long been recognized to be a major determinant of their conformational properties. chi torsional energetics were systematically mapped in deoxyribonucleosides using high-level quantum mechanical methods, for north and south sugar puckers and with gamma in the g(+) and trans conformations. In all cases, the syn conformation is found higher in energy than the anti. When gamma is changed from g(+) to trans, the anti orientation of the base is strongly destabilized, and the energy difference and barrier between anti and syn are significantly decreased. The barrier between anti and syn in deoxyribonucleosides is found to be less than 10 kcal/mol and tends to be lower with purines than with pyrimidines. With gamma = g(+)/chi = anti, a south sugar yields a significantly broader energy well than a north sugar with no energy barrier between chi values typical of A or B DNA. Contrary to the prevailing view, the syn orientation is not more stable with south puckers than with north puckers. The syn conformation is significantly more energetically accessible with guanine than with adenine in 5-nucleotides but not in nucleosides. Analysis of nucleic acid crystal structures shows that gamma = trans/chi = anti is a minor but not negligible conformation. Overall, chi appears to be a very malleable structural parameter with the experimental chi distributions reflecting, to a large extent, the associated intrinsic torsional energetics.
Full Text
The Full Text of this article is available as a PDF (198.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc. 1972 Nov 15;94(23):8205–8212. doi: 10.1021/ja00778a043. [DOI] [PubMed] [Google Scholar]
- Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. J Am Chem Soc. 1973 Apr 4;95(7):2333–2344. doi: 10.1021/ja00788a038. [DOI] [PubMed] [Google Scholar]
- Arnott S., Chandrasekaran R., Birdsall D. L., Leslie A. G., Ratliff R. L. Left-handed DNA helices. Nature. 1980 Feb 21;283(5749):743–745. doi: 10.1038/283743a0. [DOI] [PubMed] [Google Scholar]
- Arnott S., Hukins D. W. Conservation of conformation in mono and poly-nucleotides. Nature. 1969 Nov 29;224(5222):886–888. doi: 10.1038/224886a0. [DOI] [PubMed] [Google Scholar]
- Arnott S., Hukins D. W. Optimised parameters for A-DNA and B-DNA. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504–1509. doi: 10.1016/0006-291x(72)90243-4. [DOI] [PubMed] [Google Scholar]
- Banavali N. K., MacKerell A. D., Jr Reevaluation of stereoelectronic contributions to the conformational properties of the phosphodiester and N3'-phosphoramidate moieties of nucleic acids. J Am Chem Soc. 2001 Jul 18;123(28):6747–6755. doi: 10.1021/ja010295w. [DOI] [PubMed] [Google Scholar]
- Baudet S., Janin J. Crystal structure of a barnase-d(GpC) complex at 1.9 A resolution. J Mol Biol. 1991 May 5;219(1):123–132. doi: 10.1016/0022-2836(91)90862-z. [DOI] [PubMed] [Google Scholar]
- Berman H. M., Olson W. K., Beveridge D. L., Westbrook J., Gelbin A., Demeny T., Hsieh S. H., Srinivasan A. R., Schneider B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992 Sep;63(3):751–759. doi: 10.1016/S0006-3495(92)81649-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Berthod H., Pullman B. Molecular orbital calculations on the conformation of nucleic acids and their constituents. I. Conformational energies of beta-nucleosides with C(3')-and C(2')-endo sugars. Biochim Biophys Acta. 1971 Apr 8;232(4):595–606. doi: 10.1016/0005-2787(71)90750-7. [DOI] [PubMed] [Google Scholar]
- Berthod H., Pullman B. Molecular orbital calculations on the conformation of nucleic acids and their constituents. II. Conformational energies of nucleosides with C(3')-and C(2')-exo sugars. Biochim Biophys Acta. 1971 Sep 24;246(3):359–364. doi: 10.1016/0005-2787(71)90772-6. [DOI] [PubMed] [Google Scholar]
- Berthod Hélène, Pullman Bernard. Nucleotides: Rigid or flexible? FEBS Lett. 1973 Mar 1;30(2):231–235. doi: 10.1016/0014-5793(73)80658-1. [DOI] [PubMed] [Google Scholar]
- Cheatham T. E., 3rd, Cieplak P., Kollman P. A. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn. 1999 Feb;16(4):845–862. doi: 10.1080/07391102.1999.10508297. [DOI] [PubMed] [Google Scholar]
- Cheong C., Varani G., Tinoco I., Jr Solution structure of an unusually stable RNA hairpin, 5'GGAC(UUCG)GUCC. Nature. 1990 Aug 16;346(6285):680–682. doi: 10.1038/346680a0. [DOI] [PubMed] [Google Scholar]
- Cognet J. A., Gabarro-Arpa J., Le Bret M., van der Marel G. A., van Boom J. H., Fazakerley G. V. Solution conformation of an oligonucleotide containing a G.G mismatch determined by nuclear magnetic resonance and molecular mechanics. Nucleic Acids Res. 1991 Dec 25;19(24):6771–6779. doi: 10.1093/nar/19.24.6771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coste F., Malinge J. M., Serre L., Shepard W., Roth M., Leng M., Zelwer C. Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 A resolution: hydration at the platinated site. Nucleic Acids Res. 1999 Apr 15;27(8):1837–1846. doi: 10.1093/nar/27.8.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DONOHUE J., TRUEBLOOD K. N. Base pairing in DNA. J Mol Biol. 1960 Dec;2:363–371. doi: 10.1016/s0022-2836(60)80047-2. [DOI] [PubMed] [Google Scholar]
- Davies D. B., Danyluk S. S. Nuclear magnetic resonance studies of 5'-ribo- and deoxyribonucleotide structures in solution. Biochemistry. 1974 Oct 8;13(21):4417–4434. doi: 10.1021/bi00718a027. [DOI] [PubMed] [Google Scholar]
- Davis P. W., Adamiak R. W., Tinoco I., Jr Z-RNA: the solution NMR structure of r(CGCGCG). Biopolymers. 1990 Jan;29(1):109–122. doi: 10.1002/bip.360290116. [DOI] [PubMed] [Google Scholar]
- Dickerson R. E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 1998 Apr 15;26(8):1906–1926. doi: 10.1093/nar/26.8.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickerson R. E. DNA structure from A to Z. Methods Enzymol. 1992;211:67–111. doi: 10.1016/0076-6879(92)11007-6. [DOI] [PubMed] [Google Scholar]
- Dickerson R. E., Drew H. R., Conner B. N., Wing R. M., Fratini A. V., Kopka M. L. The anatomy of A-, B-, and Z-DNA. Science. 1982 Apr 30;216(4545):475–485. doi: 10.1126/science.7071593. [DOI] [PubMed] [Google Scholar]
- Drew H., Takano T., Tanaka S., Itakura K., Dickerson R. E. High-salt d(CpGpCpG), a left-handed Z' DNA double helix. Nature. 1980 Aug 7;286(5773):567–573. doi: 10.1038/286567a0. [DOI] [PubMed] [Google Scholar]
- FRANKLIN R. E., GOSLING R. G. Molecular configuration in sodium thymonucleate. Nature. 1953 Apr 25;171(4356):740–741. doi: 10.1038/171740a0. [DOI] [PubMed] [Google Scholar]
- Foloppe N., MacKerell A. D., Jr Intrinsic conformational properties of deoxyribonucleosides: implicated role for cytosine in the equilibrium among the A, B, and Z forms of DNA. Biophys J. 1999 Jun;76(6):3206–3218. doi: 10.1016/S0006-3495(99)77472-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn M., Heinemann U. DNA helix structure and refinement algorithm: comparison of models for d(CCAGGCm5CTGG) derived from NUCLSQ, TNT and X-PLOR. Acta Crystallogr D Biol Crystallogr. 1993 Sep 1;49(Pt 5):468–477. doi: 10.1107/S0907444993004858. [DOI] [PubMed] [Google Scholar]
- Hartmann B., Lavery R. DNA structural forms. Q Rev Biophys. 1996 Dec;29(4):309–368. doi: 10.1017/s0033583500005874. [DOI] [PubMed] [Google Scholar]
- Haschemeyer A. E., Rich A. Nucleoside conformations: an analysis of steric barriers to rotation about the glycosidic bond. J Mol Biol. 1967 Jul 28;27(2):369–384. doi: 10.1016/0022-2836(67)90026-5. [DOI] [PubMed] [Google Scholar]
- Haschemeyer A. E., Sobell H. M. The crystal structure of a hydrogen bonded complex of deoxyguanosine and 5-bromodeoxycytidine. Acta Crystallogr. 1965 Jul 10;19(1):125–130. doi: 10.1107/s0365110x65002864. [DOI] [PubMed] [Google Scholar]
- Herbert A., Rich A. The biology of left-handed Z-DNA. J Biol Chem. 1996 May 17;271(20):11595–11598. doi: 10.1074/jbc.271.20.11595. [DOI] [PubMed] [Google Scholar]
- Ho P. S., Ellison M. J., Quigley G. J., Rich A. A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J. 1986 Oct;5(10):2737–2744. doi: 10.1002/j.1460-2075.1986.tb04558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones S., van Heyningen P., Berman H. M., Thornton J. M. Protein-DNA interactions: A structural analysis. J Mol Biol. 1999 Apr 16;287(5):877–896. doi: 10.1006/jmbi.1999.2659. [DOI] [PubMed] [Google Scholar]
- Kang C., Zhang X., Ratliff R., Moyzis R., Rich A. Crystal structure of four-stranded Oxytricha telomeric DNA. Nature. 1992 Mar 12;356(6365):126–131. doi: 10.1038/356126a0. [DOI] [PubMed] [Google Scholar]
- Lakshiminarayanan A. V., Sasisekharan V. Stereochemistry of nucleic acids and polynucleotides. II. Allowed conformations of the monomer unit for different ribose puckerings. Biochim Biophys Acta. 1970 Mar 19;204(1):49–59. doi: 10.1016/0005-2787(70)90489-2. [DOI] [PubMed] [Google Scholar]
- Lebrun A., Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996 Jun 15;24(12):2260–2267. doi: 10.1093/nar/24.12.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebrun A., Lavery R. Unusual DNA conformations. Curr Opin Struct Biol. 1997 Jun;7(3):348–354. doi: 10.1016/s0959-440x(97)80050-4. [DOI] [PubMed] [Google Scholar]
- Leslie A. G., Arnott S., Chandrasekaran R., Ratliff R. L. Polymorphism of DNA double helices. J Mol Biol. 1980 Oct 15;143(1):49–72. doi: 10.1016/0022-2836(80)90124-2. [DOI] [PubMed] [Google Scholar]
- Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
- Malinina L., Urpí L., Salas X., Huynh-Dinh T., Subirana J. A. Recombination-like structure of d(CCGCGG). J Mol Biol. 1994 Oct 28;243(3):484–493. doi: 10.1006/jmbi.1994.1674. [DOI] [PubMed] [Google Scholar]
- Moodie S. L., Thornton J. M. A study into the effects of protein binding on nucleotide conformation. Nucleic Acids Res. 1993 Mar 25;21(6):1369–1380. doi: 10.1093/nar/21.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson W. K., Flory P. J. Spatial configuration of polynucleotide chains. II. Conformational energies and the average dimensions of polyribonucleotides. Biopolymers. 1972 Jan;11(1):25–56. doi: 10.1002/bip.1972.360110103. [DOI] [PubMed] [Google Scholar]
- Olson W. K., Flory P. J. Spatial configurations of polynucleotide chains. I. Steric interactions in polyribonucleotides: a virtual bond model. Biopolymers. 1972 Jan;11(1):1–23. doi: 10.1002/bip.1972.360110102. [DOI] [PubMed] [Google Scholar]
- Olson W. K. Syn-anti effects on the spatial configuration of polynucleotide chains. Biopolymers. 1973;12(8):1787–1814. doi: 10.1002/bip.1973.360120808. [DOI] [PubMed] [Google Scholar]
- Ortiz-Lombardía M., González A., Eritja R., Aymamí J., Azorín F., Coll M. Crystal structure of a DNA Holliday junction. Nat Struct Biol. 1999 Oct;6(10):913–917. doi: 10.1038/13277. [DOI] [PubMed] [Google Scholar]
- Peticolas W. L., Wang Y., Thomas G. A. Some rules for predicting the base-sequence dependence of DNA conformation. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2579–2583. doi: 10.1073/pnas.85.8.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohl F. M., Jovin T. M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol. 1972 Jun 28;67(3):375–396. doi: 10.1016/0022-2836(72)90457-3. [DOI] [PubMed] [Google Scholar]
- Rao S. T., Sundaralingam M. Stereochemistry of nucleic acids and their constituents. 13. The crystal and molecular structure of 3'-O-acetyladenosine. Conformational analysis of nucleosides and nucleotides with syn glycosidic torsional angle. J Am Chem Soc. 1970 Aug 12;92(16):4963–4970. doi: 10.1021/ja00719a033. [DOI] [PubMed] [Google Scholar]
- Rhodes L. M., Schimmel P. R. Nanosecond relaxation processes in aqueous mononucleoside solutions. Biochemistry. 1971 Nov 23;10(24):4426–4433. doi: 10.1021/bi00800a012. [DOI] [PubMed] [Google Scholar]
- Roll C., Ketterl C., Fazakerley G. V., Boulard Y. Solution structures of a duplex containing an adenine opposite a gap (absence of one nucleotide). An NMR study and molecular dynamic simulations with explicit water molecules. Eur J Biochem. 1999 Aug;264(1):120–131. doi: 10.1046/j.1432-1327.1999.00585.x. [DOI] [PubMed] [Google Scholar]
- Rubin J., Brennan T., Sundaralingam M. Crystal and molecular structure of a naturally occurring dinucleoside monophosphate. Uridylyl-(3'-5')-adenosine hemihydrate. Conformational "rigidity" of the nucleotide unit and models for polynucleotide chain folding. Biochemistry. 1972 Aug 1;11(16):3112–3128. doi: 10.1021/bi00766a027. [DOI] [PubMed] [Google Scholar]
- Saenger W., Scheit K. H. A pyrimidine nucleoside in the syn conformation: molecular and crystal structure of 4-thiouridine-hydrate. J Mol Biol. 1970 May 28;50(1):153–169. doi: 10.1016/0022-2836(70)90112-9. [DOI] [PubMed] [Google Scholar]
- Saran A., Pullman B., Perahia D. Molecular orbital calculations on the conformation of nucleic acids and their constituents. IV. Conformations about the exocyclic C(4')-C(5') bond. Biochim Biophys Acta. 1972 Dec 6;287(2):211–231. doi: 10.1016/0005-2787(72)90371-1. [DOI] [PubMed] [Google Scholar]
- Schwartz T., Rould M. A., Lowenhaupt K., Herbert A., Rich A. Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science. 1999 Jun 11;284(5421):1841–1845. doi: 10.1126/science.284.5421.1841. [DOI] [PubMed] [Google Scholar]
- Skelly J. V., Edwards K. J., Jenkins T. C., Neidle S. Crystal structure of an oligonucleotide duplex containing G.G base pairs: influence of mispairing on DNA backbone conformation. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):804–808. doi: 10.1073/pnas.90.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith F. W., Feigon J. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature. 1992 Mar 12;356(6365):164–168. doi: 10.1038/356164a0. [DOI] [PubMed] [Google Scholar]
- Son T. D., Guschlbauer W., Guéron M. Flexibility and conformations of guanosine monophosphates by the Overhauser effect. J Am Chem Soc. 1972 Nov 1;94(22):7903–7911. doi: 10.1021/ja00777a038. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Seeman N. C., Kim S. H., Berman H. M. Crystal structure of a naturally occurring dinucleoside phoaphate: uridylyl 3',5'-adenosine phosphate model for RNA chain folding. J Mol Biol. 1972 May 28;66(3):403–421. doi: 10.1016/0022-2836(72)90423-8. [DOI] [PubMed] [Google Scholar]
- Takahara P. M., Rosenzweig A. C., Frederick C. A., Lippard S. J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature. 1995 Oct 19;377(6550):649–652. doi: 10.1038/377649a0. [DOI] [PubMed] [Google Scholar]
- Tavale S. S., Sobell H. M. Crystal and molecular structure of 8-bromoguanosine and 8-bromoadenosine, two purine nucleosides in the syn conformation. J Mol Biol. 1970 Feb 28;48(1):109–123. doi: 10.1016/0022-2836(70)90222-6. [DOI] [PubMed] [Google Scholar]
- Wahl M. C., Sundaralingam M. C-H...O hydrogen bonding in biology. Trends Biochem Sci. 1997 Mar;22(3):97–102. doi: 10.1016/s0968-0004(97)01004-9. [DOI] [PubMed] [Google Scholar]
- Wang A. H., Gessner R. V., van der Marel G. A., van Boom J. H., Rich A. Crystal structure of Z-DNA without an alternating purine-pyrimidine sequence. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3611–3615. doi: 10.1073/pnas.82.11.3611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang A. H., Hakoshima T., van der Marel G., van Boom J. H., Rich A. AT base pairs are less stable than GC base pairs in Z-DNA: the crystal structure of d(m5CGTAm5CG). Cell. 1984 May;37(1):321–331. doi: 10.1016/0092-8674(84)90328-3. [DOI] [PubMed] [Google Scholar]
- Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
- Wang A. J., Quigley G. J., Kolpak F. J., van der Marel G., van Boom J. H., Rich A. Left-handed double helical DNA: variations in the backbone conformation. Science. 1981 Jan 9;211(4478):171–176. doi: 10.1126/science.7444458. [DOI] [PubMed] [Google Scholar]
- Wang Y., Thomas G. A., Peticolas W. L. Sequence dependent conformations of oligomeric DNA's in aqueous solutions and in crystals. J Biomol Struct Dyn. 1987 Oct;5(2):249–274. doi: 10.1080/07391102.1987.10506392. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Rahman A. Nucleoside conformation and non-bonded interactions. J Mol Biol. 1971 Feb 28;56(1):129–142. doi: 10.1016/0022-2836(71)90089-1. [DOI] [PubMed] [Google Scholar]
- Yathindra N., Sundaralingam M. Conformational studies on guanosine nucleotides and polynucleotides. The effect of the base on the glycosyl and backbone conformations. Biopolymers. 1973;12(9):2075–2082. doi: 10.1002/bip.1973.360120913. [DOI] [PubMed] [Google Scholar]