Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1570–1579. doi: 10.1016/S0006-3495(02)75508-2

Entrapment and condensation of DNA in neutral reverse micelles.

Vladimir G Budker 1, Paul M Slattum 1, Sean D Monahan 1, Jon A Wolff 1
PMCID: PMC1301955  PMID: 11867469

Abstract

DNA condensation and compaction is induced by a variety of condensing agents such as polycations. The present study analyzed the structure of plasmid DNA (DNA) in the small inner space of reverse micelles formed from nonionic surfactants (isotropic phase). Spectroscopic studies indicated that DNA was dissolved in an organic solvent in the presence of a neutral detergent. Fluorescent quenching of ethidium bromide and of rhodamine covalently attached to DNA suggested that the DNA within neutral, reverse micelles was condensed. Circular dichroism indicated that the DNA structure was C form (member of B family) and not the dehydrated A form. Concordantly, NMR experiments indicated that the reverse micelles contained a pool of free water, even at a ratio of water to surfactant (Wo) of 3.75. Electron microscopic analysis also indicated that the DNA was in a ring-like structure, probably toroids. Atomic force microscopic images also revealed small, compact particles after the condensed DNA structures were preserved using an innovative cross-linking strategy. In the lamellar phase, the DNA was configured in long strands that were 20 nm in diameter. Interestingly, such DNA structures, reminiscent of "nanowires," have apparently not been previously observed.

Full Text

The Full Text of this article is available as a PDF (281.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akao T., Fukumoto T., Ihara H., Ito A. Conformational change in DNA induced by cationic bilayer membranes. FEBS Lett. 1996 Aug 5;391(1-2):215–218. doi: 10.1016/0014-5793(96)00736-3. [DOI] [PubMed] [Google Scholar]
  2. Arscott P. G., Li A. Z., Bloomfield V. A. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers. 1990;30(5-6):619–630. doi: 10.1002/bip.360300514. [DOI] [PubMed] [Google Scholar]
  3. Baase W. A., Johnson W. C., Jr Circular dichroism and DNA secondary structure. Nucleic Acids Res. 1979 Feb;6(2):797–814. doi: 10.1093/nar/6.2.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Basu H. S., Schwietert H. C., Feuerstein B. G., Marton L. J. Effects of variation in the structure of spermine on the association with DNA and the induction of DNA conformational changes. Biochem J. 1990 Jul 15;269(2):329–334. doi: 10.1042/bj2690329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloomfield V. A. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers. 1991 Nov;31(13):1471–1481. doi: 10.1002/bip.360311305. [DOI] [PubMed] [Google Scholar]
  6. Bloomfield V. A. DNA condensation by multivalent cations. Biopolymers. 1997;44(3):269–282. doi: 10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  7. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  8. Budker V., Zhang G., Knechtle S., Wolff J. A. Naked DNA delivered intraportally expresses efficiently in hepatocytes. Gene Ther. 1996 Jul;3(7):593–598. [PubMed] [Google Scholar]
  9. Cherng J. Y., Schuurmans-Nieuwenbroek N. M., Jiskoot W., Talsma H., Zuidam N. J., Hennink W. E., Crommelin D. J. Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. J Control Release. 1999 Aug 5;60(2-3):343–353. doi: 10.1016/s0168-3659(99)00089-9. [DOI] [PubMed] [Google Scholar]
  10. Fishman D. M., Patterson G. D. Light scattering studies of supercoiled and nicked DNA. Biopolymers. 1996 Apr;38(4):535–552. doi: 10.1002/(SICI)1097-0282(199604)38:4%3C535::AID-BIP9%3E3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  11. Gershon H., Ghirlando R., Guttman S. B., Minsky A. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry. 1993 Jul 20;32(28):7143–7151. doi: 10.1021/bi00079a011. [DOI] [PubMed] [Google Scholar]
  12. Ghirlando R., Wachtel E. J., Arad T., Minsky A. DNA packaging induced by micellar aggregates: a novel in vitro DNA condensation system. Biochemistry. 1992 Aug 11;31(31):7110–7119. doi: 10.1021/bi00146a012. [DOI] [PubMed] [Google Scholar]
  13. Girod J. C., Johnson W. C., Jr, Huntington S. K., Maestre M. F. Conformation of deoxyribonucleic acid in alcohol solutions. Biochemistry. 1973 Dec 4;12(25):5092–5096. doi: 10.1021/bi00749a011. [DOI] [PubMed] [Google Scholar]
  14. Granados E. N., Bello J. Interactions of poly (N epsilon , N epsilon , N epsilon ,-trimethyllysine) and poly(lysine) with polynucleotides: circular dichroism and A-T sequence selectivity. Biochemistry. 1981 Aug 4;20(16):4761–4765. doi: 10.1021/bi00519a036. [DOI] [PubMed] [Google Scholar]
  15. Imre V. E., Luisi P. L. Solubilization and condensed packaging of nucleic acids in reversed micelles. Biochem Biophys Res Commun. 1982 Jul 30;107(2):538–545. doi: 10.1016/0006-291x(82)91525-x. [DOI] [PubMed] [Google Scholar]
  16. Lerman L. S. A transition to a compact form of DNA in polymer solutions. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1886–1890. doi: 10.1073/pnas.68.8.1886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luisi P. L., Magid L. J. Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. CRC Crit Rev Biochem. 1986;20(4):409–474. doi: 10.3109/10409238609081999. [DOI] [PubMed] [Google Scholar]
  18. Sobell H. M., Reddy B. S., Bhandary K. K., Jain S. C., Sakore T. D., Seshadri T. P. Conformational flexibility in DNA structure as revealed by structural studies of drug intercalation and its broader implications in understanding the organization of DNA in chromatin. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):87–102. doi: 10.1101/sqb.1978.042.01.010. [DOI] [PubMed] [Google Scholar]
  19. Strzelecka T. E., Rill R. L. A 23Na-NMR study of sodium-DNA interactions in concentrated DNA solutions at low-supporting electrolyte concentration. Biopolymers. 1990;30(7-8):803–814. doi: 10.1002/bip.360300715. [DOI] [PubMed] [Google Scholar]
  20. Strzelecka T. E., Rill R. L. Phase transitions of concentrated DNA solutions in low concentrations of 1:1 supporting electrolyte. Biopolymers. 1990;30(1-2):57–71. doi: 10.1002/bip.360300108. [DOI] [PubMed] [Google Scholar]
  21. Tang M. X., Szoka F. C. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 1997 Aug;4(8):823–832. doi: 10.1038/sj.gt.3300454. [DOI] [PubMed] [Google Scholar]
  22. Trubetskoy V. S., Slattum P. M., Hagstrom J. E., Wolff J. A., Budker V. G. Quantitative assessment of DNA condensation. Anal Biochem. 1999 Feb 15;267(2):309–313. doi: 10.1006/abio.1998.3032. [DOI] [PubMed] [Google Scholar]
  23. Wu H., Ramachandran C., Bielinska A. U., Kingzett K., Sun R., Weiner N. D., Roessler B. J. Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. Int J Pharm. 2001 Jun 19;221(1-2):23–34. doi: 10.1016/s0378-5173(01)00672-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES