Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1586–1597. doi: 10.1016/S0006-3495(02)75510-0

Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of photosystem II.

Frank L de Weerd 1, Ivo H M van Stokkum 1, Herbert van Amerongen 1, Jan P Dekker 1, Rienk van Grondelle 1
PMCID: PMC1301957  PMID: 11867471

Abstract

The pigment-protein complexes CP43 and CP47 transfer excitation energy from the peripheral antenna of photosystem II toward the photochemical reaction center. We measured the excitation dynamics of the chlorophylls in isolated CP43 and CP47 complexes at 77 K by time-resolved absorbance-difference and fluorescence spectroscopy. The spectral relaxation appeared to occur with rates of 0.2-0.4 ps and 2-3 ps in both complexes, whereas an additional relaxation of 17 ps was observed only in CP47. Using the 3.8-A crystal structure of the photosystem II core complex from Synechococcus elongatus (A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, and P. Orth, 2001, Nature, 409:739-743), excitation energy transfer kinetics were calculated and a Monte Carlo simulation of the absorption spectra was performed. In both complexes, the rate of 0.2-0.4 ps can be ascribed to excitation energy transfer within a layer of chlorophylls near the stromal side of the membrane, and the slower 2-3-ps process to excitation energy transfer to the calculated lowest excitonic state. We conclude that excitation energy transfer within CP43 and CP47 is fast and does not contribute significantly to the well-known slow trapping of excitation energy in photosystem II.

Full Text

The Full Text of this article is available as a PDF (247.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber J., Morris E., Büchel C. Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):239–247. doi: 10.1016/s0005-2728(00)00158-4. [DOI] [PubMed] [Google Scholar]
  2. Boekema E. J., Van Roon H., Van Breemen J. F., Dekker J. P. Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Eur J Biochem. 1999 Dec;266(2):444–452. doi: 10.1046/j.1432-1327.1999.00876.x. [DOI] [PubMed] [Google Scholar]
  3. Boekema E. J., van Roon H., Calkoen F., Bassi R., Dekker J. P. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry. 1999 Feb 23;38(8):2233–2239. doi: 10.1021/bi9827161. [DOI] [PubMed] [Google Scholar]
  4. Durrant J. R., Klug D. R., Kwa S. L., van Grondelle R., Porter G., Dekker J. P. A multimer model for P680, the primary electron donor of photosystem II. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4798–4802. doi: 10.1073/pnas.92.11.4798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gobets B., van Stokkum I. H., Rögner M., Kruip J., Schlodder E., Karapetyan N. V., Dekker J. P., van Grondelle R. Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J. 2001 Jul;81(1):407–424. doi: 10.1016/S0006-3495(01)75709-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Groot M. L., Frese R. N., de Weerd F. L., Bromek K., Pettersson A., Peterman E. J., van Stokkum I. H., van Grondelle R., Dekker J. P. Spectroscopic properties of the CP43 core antenna protein of photosystem II. Biophys J. 1999 Dec;77(6):3328–3340. doi: 10.1016/S0006-3495(99)77164-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Groot M. L., Peterman E. J., van Stokkum I. H., Dekker J. P., van Grondelle R. Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Biophys J. 1995 Jan;68(1):281–290. doi: 10.1016/S0006-3495(95)80186-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rhee K. H., Morris E. P., Barber J., Kühlbrandt W. Three-dimensional structure of the plant photosystem II reaction centre at 8 A resolution. Nature. 1998 Nov 19;396(6708):283–286. doi: 10.1038/24421. [DOI] [PubMed] [Google Scholar]
  10. Schatz G. H., Brock H., Holzwarth A. R. Kinetic and Energetic Model for the Primary Processes in Photosystem II. Biophys J. 1988 Sep;54(3):397–405. doi: 10.1016/S0006-3495(88)82973-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vasil'ev S., Orth P., Zouni A., Owens T. G., Bruce D. Excited-state dynamics in photosystem II: insights from the x-ray crystal structure. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8602–8607. doi: 10.1073/pnas.141239598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zouni A., Witt H. T., Kern J., Fromme P., Krauss N., Saenger W., Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature. 2001 Feb 8;409(6821):739–743. doi: 10.1038/35055589. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES