Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1598–1606. doi: 10.1016/S0006-3495(02)75511-2

Fourier transform infrared study of the effect of different cations on bacteriorhodopsin protein thermal stability.

Colin D Heyes 1, Jianping Wang 1, Laurie S Sanii 1, Mostafa A El-Sayed 1
PMCID: PMC1301958  PMID: 11867472

Abstract

The effect of divalent ion binding to deionized bacteriorhodopsin (dI-bR) on the thermal transitions of the protein secondary structure have been studied by using temperature-dependent Fourier transform infrared (FT-IR) spectroscopy. The native metal ions in bR, Ca(2+), and Mg(2+), which we studied previously, are compared with Mn(2+), Hg(2+), and a large, synthesized divalent organic cation, ((Et)(3)N)(2)Bu(2+). It was found that in all cases of ion regeneration, there is a pre-melting, reversible conformational transition in which the amide frequency shifts from 1665 to 1652 cm(-1). This always occurs at approximately 80 degrees C, independent of which cation is used for the regeneration. The irreversible thermal transition (melting), monitored by the appearance of the band at 1623 cm(-1), is found to occur at a lower temperature than that for the native bR but higher than that for acid blue bR in all cases. However, the temperature for this transition is dependent on the identity of the cation. Furthermore, it is shown that the mechanism of melting of the organic cation regenerated bR is different than for the metal cations, suggesting a difference in the type of binding to the protein (either to different sites or different binding to the same site). These results are used to propose specific direct binding mechanisms of the ions to the protein of deionized bR.

Full Text

The Full Text of this article is available as a PDF (197.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariki M., Lanyi J. K. Characterization of metal ion-binding sites in bacteriorhodopsin. J Biol Chem. 1986 Jun 25;261(18):8167–8174. [PubMed] [Google Scholar]
  2. Brouillette C. G., Muccio D. D., Finney T. K. pH dependence of bacteriorhodopsin thermal unfolding. Biochemistry. 1987 Nov 17;26(23):7431–7438. doi: 10.1021/bi00397a035. [DOI] [PubMed] [Google Scholar]
  3. Chang C. H., Chen J. G., Govindjee R., Ebrey T. Cation binding by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1985 Jan;82(2):396–400. doi: 10.1073/pnas.82.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chronister E. L., Corcoran T. C., Song L., El-Sayed M. A. On the molecular mechanisms of the Schiff base deprotonation during the bacteriorhodopsin photocycle. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8580–8584. doi: 10.1073/pnas.83.22.8580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duñach M., Padrós E., Muga A., Arrondo J. L. Fourier-transform infrared studies on cation binding to native and modified purple membranes. Biochemistry. 1989 Oct 31;28(22):8940–8945. doi: 10.1021/bi00448a038. [DOI] [PubMed] [Google Scholar]
  6. Duñach M., Seigneuret M., Rigaud J. L., Padrós E. Influence of cations on the blue to purple transition of bacteriorhodopsin. Comparison of Ca2+ and Hg2+ binding and their effect on the surface potential. J Biol Chem. 1988 Nov 25;263(33):17378–17384. [PubMed] [Google Scholar]
  7. Eliash T., Ottolenghi M., Sheves M. The titrations of Asp-85 and of the cation binding residues in bacteriorhodopsin are not coupled. FEBS Lett. 1999 Mar 26;447(2-3):307–310. doi: 10.1016/s0014-5793(99)00289-6. [DOI] [PubMed] [Google Scholar]
  8. Fu X., Bressler S., Ottolenghi M., Eliash T., Friedman N., Sheves M. Titration kinetics of Asp-85 in bacteriorhodopsin: exclusion of the retinal pocket as the color-controlling cation binding site. FEBS Lett. 1997 Oct 20;416(2):167–170. doi: 10.1016/s0014-5793(97)01194-0. [DOI] [PubMed] [Google Scholar]
  9. Hampp Norbert. Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. Chem Rev. 2000 May 10;100(5):1755–1776. doi: 10.1021/cr980072x. [DOI] [PubMed] [Google Scholar]
  10. Heyes C. D., El-Sayed M. A. Effect of temperature, pH, and metal ion binding on the secondary structure of bacteriorhodopsin: FT-IR study of the melting and premelting transition temperatures. Biochemistry. 2001 Oct 2;40(39):11819–11827. doi: 10.1021/bi002594o. [DOI] [PubMed] [Google Scholar]
  11. Heyn M. P., Dudda C., Otto H., Seiff F., Wallat I. The purple to blue transition of bacteriorhodopsin is accompanied by a loss of the hexagonal lattice and a conformational change. Biochemistry. 1989 Nov 14;28(23):9166–9172. doi: 10.1021/bi00449a031. [DOI] [PubMed] [Google Scholar]
  12. Jackson M. B., Sturtevant J. M. Phase transitions of the purple membranes of Halobacterium halobium. Biochemistry. 1978 Mar 7;17(5):911–915. doi: 10.1021/bi00598a026. [DOI] [PubMed] [Google Scholar]
  13. Jonas R., Ebrey T. G. Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):149–153. doi: 10.1073/pnas.88.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kao W. Y., Davis C. E., Kim Y. I., Beach J. M. Fluorescence emission spectral shift measurements of membrane potential in single cells. Biophys J. 2001 Aug;81(2):1163–1170. doi: 10.1016/S0006-3495(01)75773-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawase Y., Tanio M., Kira A., Yamaguchi S., Tuzi S., Naito A., Kataoka M., Lanyi J. K., Needleman R., Saitô H. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Biochemistry. 2000 Nov 28;39(47):14472–14480. doi: 10.1021/bi0015820. [DOI] [PubMed] [Google Scholar]
  16. Kimura Y., Ikegami A., Stoeckenius W. Salt and pH-dependent changes of the purple membrane absorption spectrum. Photochem Photobiol. 1984 Nov;40(5):641–646. doi: 10.1111/j.1751-1097.1984.tb05353.x. [DOI] [PubMed] [Google Scholar]
  17. Krimm S., Dwivedi A. M. Infrared spectrum of the purple membrane: clue to a proton conduction mechanism? Science. 1982 Apr 23;216(4544):407–408. doi: 10.1126/science.6280277. [DOI] [PubMed] [Google Scholar]
  18. Lanyi J. K. Bacteriorhodopsin as a model for proton pumps. Nature. 1995 Jun 8;375(6531):461–463. doi: 10.1038/375461a0. [DOI] [PubMed] [Google Scholar]
  19. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
  20. Mathies R. A., Lin S. W., Ames J. B., Pollard W. T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu Rev Biophys Biophys Chem. 1991;20:491–518. doi: 10.1146/annurev.bb.20.060191.002423. [DOI] [PubMed] [Google Scholar]
  21. Mowery P. C., Lozier R. H., Chae Q., Tseng Y. W., Taylor M., Stoeckenius W. Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry. 1979 Sep 18;18(19):4100–4107. doi: 10.1021/bi00586a007. [DOI] [PubMed] [Google Scholar]
  22. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  23. Rothschild K. J., Clark N. A. Anomalous amide I infrared absorption of purple membrane. Science. 1979 Apr 20;204(4390):311–312. doi: 10.1126/science.432645. [DOI] [PubMed] [Google Scholar]
  24. Rothschild K. J., Clark N. A. Polarized infrared spectroscopy of oriented purple membrane. Biophys J. 1979 Mar;25(3):473–487. doi: 10.1016/S0006-3495(79)85317-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stoeckenius W., Lozier R. H., Bogomolni R. A. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1979 Mar 14;505(3-4):215–278. doi: 10.1016/0304-4173(79)90006-5. [DOI] [PubMed] [Google Scholar]
  26. Szundi I., Stoeckenius W. Effect of lipid surface charges on the purple-to-blue transition of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3681–3684. doi: 10.1073/pnas.84.11.3681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Szundi I., Stoeckenius W. Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment. Biophys J. 1988 Aug;54(2):227–232. doi: 10.1016/S0006-3495(88)82951-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Szundi I., Stoeckenius W. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface. Biophys J. 1989 Aug;56(2):369–383. doi: 10.1016/S0006-3495(89)82683-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Torres J., Sepulcre F., Padrós E. Conformational changes in bacteriorhodopsin associated with protein-protein interactions: a functional alpha I-alpha II helix switch? Biochemistry. 1995 Dec 19;34(50):16320–16326. doi: 10.1021/bi00050a012. [DOI] [PubMed] [Google Scholar]
  30. Tuzi S., Naito A., Saitô H. 13C NMR study on conformation and dynamics of the transmembrane alpha-helices, loops, and C-terminus of [3-13C]Ala-labeled bacteriorhodopsin. Biochemistry. 1994 Dec 20;33(50):15046–15052. doi: 10.1021/bi00254a013. [DOI] [PubMed] [Google Scholar]
  31. Tuzi S., Naito A., Saitô H. Temperature-dependent conformational change of bacteriorhodopsin as studied by solid-state 13C NMR. Eur J Biochem. 1996 Jul 15;239(2):294–301. doi: 10.1111/j.1432-1033.1996.0294u.x. [DOI] [PubMed] [Google Scholar]
  32. Vogel H., Gärtner W. The secondary structure of bacteriorhodopsin determined by Raman and circular dichroism spectroscopy. J Biol Chem. 1987 Aug 25;262(24):11464–11469. [PubMed] [Google Scholar]
  33. Váró G., Brown L. S., Needleman R., Lanyi J. K. Binding of calcium ions to bacteriorhodopsin. Biophys J. 1999 Jun;76(6):3219–3226. doi: 10.1016/S0006-3495(99)77473-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wakatsuki S., Kimura Y., Stoeckenius W., Gillis N., Eliezer D., Hodgson K. O., Doniach S. Blue form of bacteriorhodopsin and its order-disorder transition during dehydration. Biochim Biophys Acta. 1994 Apr 28;1185(2):160–166. doi: 10.1016/0005-2728(94)90206-2. [DOI] [PubMed] [Google Scholar]
  35. Wang J., El-Sayed M. A. Temperature jump-induced secondary structural change of the membrane protein bacteriorhodopsin in the premelting temperature region: a nanosecond time-resolved Fourier transform infrared study. Biophys J. 1999 May;76(5):2777–2783. doi: 10.1016/S0006-3495(99)77431-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wang J., el-Sayed M. A. The effect of metal cation binding on the protein, lipid and retinal isomeric ratio in regenerated bacteriorhodopsin of purple membrane. Photochem Photobiol. 2001 May;73(5):564–571. doi: 10.1562/0031-8655(2001)073<0564:teomcb>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  37. Yang D., el-Sayed M. A. The Ca2+ binding to deionized monomerized and to retinal removed bacteriorhodopsin. Biophys J. 1995 Nov;69(5):2056–2059. doi: 10.1016/S0006-3495(95)80075-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhang Y. N., Sweetman L. L., Awad E. S., El-Sayed M. A. Nature of the individual Ca binding sites in Ca-regenerated bacteriorhodopsin. Biophys J. 1992 May;61(5):1201–1206. doi: 10.1016/S0006-3495(92)81929-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhang Y. N., el-Sayed M. A., Bonet M. L., Lanyi J. K., Chang M., Ni B., Needleman R. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1445–1449. doi: 10.1073/pnas.90.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES