Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1607–1619. doi: 10.1016/S0006-3495(02)75512-4

Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins.

Suzana M Andrade 1, Sílvia M B Costa 1
PMCID: PMC1301959  PMID: 11867473

Abstract

The interaction of meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) sodium salt to human serum albumin and beta-lactoglobulin was studied by steady-state and dynamic fluorescence at different pH of aqueous solutions. The formation of TSPP J-aggregates and a noncovalent TSPP-protein complex was monitored by fluorescence titrations, which depend on pH and on the protein nature and concentration. The complex between TSPP and protein displays a heterogeneous equilibrium with large changes in the binding strength versus pH. The large reduction of the effective binding constant from pH 2 to 7 suggests that electrostatic interactions are a major contribution to the binding of TSPP to the aforementioned proteins. TSPP aggregates and TSPP-protein complex exhibit circular dichroism induced by the presence of the protein. Circular dichroism spectra in the ultraviolet region show that the secondary structure of both proteins is not extensively affected by the TSPP presence. Protein-TSPP interaction was also examined by following the intrinsic fluorescence of the tryptophan residues of the proteins. Fluorescence quenching by acrylamide and TSPP itself also point to small changes on the protein tertiary structure and a critical distance R(0) approximately 56 A, between tryptophan and bound porphyrin, was estimated using the long distance Förster-type energy transfer formalism.

Full Text

The Full Text of this article is available as a PDF (252.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrade S. M., Costa S. M. The location of tryptophan, N-acetyltryptophan and alpha-chymotrypsin in reverse micelles of AOT: a fluorescence study. Photochem Photobiol. 2000 Oct;72(4):444–450. doi: 10.1562/0031-8655(2000)072<0444:tlotna>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  2. Avdulov N. A., Chochina S. V., Daragan V. A., Schroeder F., Mayo K. H., Wood W. G. Direct binding of ethanol to bovine serum albumin: a fluorescent and 13C NMR multiplet relaxation study. Biochemistry. 1996 Jan 9;35(1):340–347. doi: 10.1021/bi9513416. [DOI] [PubMed] [Google Scholar]
  3. Barteri M., Gaudiano M. C., Rotella S., Benagiano G., Pala A. Effect of pH on the structure and aggregation of human glycodelin A. A comparison with beta-lactoglobulin A. Biochim Biophys Acta. 2000 Jun 15;1479(1-2):255–264. doi: 10.1016/s0167-4838(00)00021-2. [DOI] [PubMed] [Google Scholar]
  4. Ben-Hur E., Horowitz B. Advances in photochemical approaches for blood sterilization. Photochem Photobiol. 1995 Sep;62(3):383–388. doi: 10.1111/j.1751-1097.1995.tb02358.x. [DOI] [PubMed] [Google Scholar]
  5. Brownlow S., Morais Cabral J. H., Cooper R., Flower D. R., Yewdall S. J., Polikarpov I., North A. C., Sawyer L. Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin. Structure. 1997 Apr 15;5(4):481–495. doi: 10.1016/s0969-2126(97)00205-0. [DOI] [PubMed] [Google Scholar]
  6. Chadborn N., Bryant J., Bain A. J., O'Shea P. Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching. Biophys J. 1999 Apr;76(4):2198–2207. doi: 10.1016/S0006-3495(99)77375-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collini M., D'Alfonso L., Baldini G. New insight on beta-lactoglobulin binding sites by 1-anilinonaphthalene-8-sulfonate fluorescence decay. Protein Sci. 2000 Oct;9(10):1968–1974. doi: 10.1110/ps.9.10.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Das K., Smirnov A. V., Wen J., Miskovsky P., Petrich J. W. Photophysics of hypericin and hypocrellin A in complex with subcellular components: interactions with human serum albumin. Photochem Photobiol. 1999 Jun;69(6):633–645. [PubMed] [Google Scholar]
  9. Davila J., Harriman A. Photoreactions of macrocyclic dyes bound to human serum albumin. Photochem Photobiol. 1990 Jan;51(1):9–19. doi: 10.1111/j.1751-1097.1990.tb01678.x. [DOI] [PubMed] [Google Scholar]
  10. Davis D. M., McLoskey D., Birch D. J., Gellert P. R., Kittlety R. S., Swart R. M. The fluorescence and circular dichroism of proteins in reverse micelles: application to the photophysics of human serum albumin and N-acetyl-L-tryptophanamide. Biophys Chem. 1996 Jun 11;60(3):63–77. doi: 10.1016/0301-4622(96)00016-6. [DOI] [PubMed] [Google Scholar]
  11. Dockal M., Carter D. C., Rüker F. The three recombinant domains of human serum albumin. Structural characterization and ligand binding properties. J Biol Chem. 1999 Oct 8;274(41):29303–29310. doi: 10.1074/jbc.274.41.29303. [DOI] [PubMed] [Google Scholar]
  12. Dufour E., Marden M. C., Haertlé T. Beta-lactoglobulin binds retinol and protoporphyrin IX at two different binding sites. FEBS Lett. 1990 Dec 17;277(1-2):223–226. doi: 10.1016/0014-5793(90)80850-i. [DOI] [PubMed] [Google Scholar]
  13. Díaz N., Suárez D., Sordo T. L., Merz K. M., Jr Molecular dynamics study of the IIA binding site in human serum albumin: influence of the protonation state of Lys195 and Lys199. J Med Chem. 2001 Jan 18;44(2):250–260. doi: 10.1021/jm000340v. [DOI] [PubMed] [Google Scholar]
  14. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
  15. Eftink M. R., Ghiron C. A. Fluorescence quenching studies with proteins. Anal Biochem. 1981 Jul 1;114(2):199–227. doi: 10.1016/0003-2697(81)90474-7. [DOI] [PubMed] [Google Scholar]
  16. Espósito B. P., Faljoni-Alário A., de Menezes J. F., de Brito H. F., Najjar R. A circular dichroism and fluorescence quenching study of the interactions between rhodium(II) complexes and human serum albumin. J Inorg Biochem. 1999 May 30;75(1):55–61. doi: 10.1016/S0162-0134(99)00032-X. [DOI] [PubMed] [Google Scholar]
  17. Frapin D., Dufour E., Haertle T. Probing the fatty acid binding site of beta-lactoglobulins. J Protein Chem. 1993 Aug;12(4):443–449. doi: 10.1007/BF01025044. [DOI] [PubMed] [Google Scholar]
  18. Gelamo E. L., Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta A Mol Biomol Spectrosc. 2000 Oct;56A(11):2255–2271. doi: 10.1016/s1386-1425(00)00313-9. [DOI] [PubMed] [Google Scholar]
  19. Grossweiner L. I., Goyal G. C. Binding of hematoporphyrin derivative to human serum albumin. Photochem Photobiol. 1984 Jul;40(1):1–4. doi: 10.1111/j.1751-1097.1984.tb04545.x. [DOI] [PubMed] [Google Scholar]
  20. He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358(6383):209–215. doi: 10.1038/358209a0. [DOI] [PubMed] [Google Scholar]
  21. Muzammil S., Kumar Y., Tayyab S. Molten globule-like state of human serum albumin at low pH. Eur J Biochem. 1999 Nov;266(1):26–32. doi: 10.1046/j.1432-1327.1999.00810.x. [DOI] [PubMed] [Google Scholar]
  22. Nelson S. W., Iancu C. V., Choe J. Y., Honzatko R. B., Fromm H. J. Tryptophan fluorescence reveals the conformational state of a dynamic loop in recombinant porcine fructose-1,6-bisphosphatase. Biochemistry. 2000 Sep 12;39(36):11100–11106. doi: 10.1021/bi000609c. [DOI] [PubMed] [Google Scholar]
  23. Palazolo G., Rodríguez F., Farruggia B., Picó G., Delorenzi N. Heat treatment of beta-lactoglobulin: structural changes studied by partitioning and fluorescence. J Agric Food Chem. 2000 Sep;48(9):3817–3822. doi: 10.1021/jf991353o. [DOI] [PubMed] [Google Scholar]
  24. Papiz M. Z., Sawyer L., Eliopoulos E. E., North A. C., Findlay J. B., Sivaprasadarao R., Jones T. A., Newcomer M. E., Kraulis P. J. The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. 1986 Nov 27-Dec 3Nature. 324(6095):383–385. doi: 10.1038/324383a0. [DOI] [PubMed] [Google Scholar]
  25. Parr G. R., Pasternack R. F. The interaction of some water-soluble porphyrins and metalloporphyrins with human serum albumin. Bioinorg Chem. 1977;7(3):277–282. doi: 10.1016/s0006-3061(00)80101-5. [DOI] [PubMed] [Google Scholar]
  26. Qin B. Y., Bewley M. C., Creamer L. K., Baker H. M., Baker E. N., Jameson G. B. Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry. 1998 Oct 6;37(40):14014–14023. doi: 10.1021/bi981016t. [DOI] [PubMed] [Google Scholar]
  27. Tominaga T. T., Yushmanov V. E., Borissevitch I. E., Imasato H., Tabak M. Aggregation phenomena in the complexes of iron tetraphenylporphine sulfonate with bovine serum albumin. J Inorg Biochem. 1997 Mar;65(4):235–244. doi: 10.1016/s0162-0134(96)00137-7. [DOI] [PubMed] [Google Scholar]
  28. Tsuchida T., Zheng G., Pandey R. K., Potter W. R., Bellnier D. A., Henderson B. W., Kato H., Dougherty T. J. Correlation between site II-specific human serum albumin (HSA) binding affinity and murine in vivo photosensitizing efficacy of some Photofrin components. Photochem Photobiol. 1997 Aug;66(2):224–228. doi: 10.1111/j.1751-1097.1997.tb08647.x. [DOI] [PubMed] [Google Scholar]
  29. Uhrínová S., Smith M. H., Jameson G. B., Uhrín D., Sawyer L., Barlow P. N. Structural changes accompanying pH-induced dissociation of the beta-lactoglobulin dimer. Biochemistry. 2000 Apr 4;39(13):3565–3574. doi: 10.1021/bi992629o. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES