Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Mar;82(3):1620–1631. doi: 10.1016/S0006-3495(02)75513-6

Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography.

Peter M Tessier 1, Abraham M Lenhoff 1, Stanley I Sandler 1
PMCID: PMC1301960  PMID: 11867474

Abstract

Weak protein interactions are often characterized in terms of the osmotic second virial coefficient (B(22)), which has been shown to correlate with protein phase behavior, such as crystallization. Traditional methods for measuring B(22), such as static light scattering, are too expensive in terms of both time and protein to allow extensive exploration of the effects of solution conditions on B(22). In this work we have measured protein interactions using self-interaction chromatography, in which protein is immobilized on chromatographic particles and the retention of the same protein is measured in isocratic elution. The relative retention of the protein reflects the average protein interactions, which we have related to the second virial coefficient via statistical mechanics. We obtain quantitative agreement between virial coefficients measured by self-interaction chromatography and traditional characterization methods for both lysozyme and chymotrypsinogen over a wide range of pH and ionic strengths, yet self-interaction chromatography requires at least an order of magnitude less time and protein than other methods. The method thus holds significant promise for the characterization of protein interactions requiring only commonly available laboratory equipment, little specialized expertise, and relatively small investments of both time and protein.

Full Text

The Full Text of this article is available as a PDF (143.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behlke J., Ristau O. Analysis of the thermodynamic non-ideality of proteins by sedimentation equilibrium experiments. Biophys Chem. 1999 Jan 11;76(1):13–23. doi: 10.1016/s0301-4622(98)00212-9. [DOI] [PubMed] [Google Scholar]
  2. Cleland J. L., Powell M. F., Shire S. J. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst. 1993;10(4):307–377. [PubMed] [Google Scholar]
  3. Connolly M. L. The molecular surface package. J Mol Graph. 1993 Jun;11(2):139–141. doi: 10.1016/0263-7855(93)87010-3. [DOI] [PubMed] [Google Scholar]
  4. Curtis R. A., Prausnitz J. M., Blanch H. W. Protein-protein and protein-salt interactions in aqueous protein solutions containing concentrated electrolytes. Biotechnol Bioeng. 1998 Jan 5;57(1):11–21. doi: 10.1002/(sici)1097-0290(19980105)57:1<11::aid-bit2>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  5. DePhillips P., Lenhoff A. M. Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. J Chromatogr A. 2000 Jun 23;883(1-2):39–54. doi: 10.1016/s0021-9673(00)00420-9. [DOI] [PubMed] [Google Scholar]
  6. Durbin S. D., Feher G. Protein crystallization. Annu Rev Phys Chem. 1996;47:171–204. doi: 10.1146/annurev.physchem.47.1.171. [DOI] [PubMed] [Google Scholar]
  7. Freyssinet J. M., Lewis B. A., Holbrook J. J., Shore J. D. Protein-protein interactions in blood clotting. The use of polarization of fluorescence to measure the dissociation of plasma factor XIIIa. Biochem J. 1978 Feb 1;169(2):403–410. doi: 10.1042/bj1690403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fägerstam L. G., Frostell-Karlsson A., Karlsson R., Persson B., Rönnberg I. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr. 1992 Apr 24;597(1-2):397–410. doi: 10.1016/0021-9673(92)80137-j. [DOI] [PubMed] [Google Scholar]
  9. GOLD A. M., FAHRNEY D. SULFONYL FLUORIDES AS INHIBITORS OF ESTERASES. II. FORMATION AND REACTIONS OF PHENYLMETHANESULFONYL ALPHA-CHYMOTRYPSIN. Biochemistry. 1964 Jun;3:783–791. doi: 10.1021/bi00894a009. [DOI] [PubMed] [Google Scholar]
  10. George A., Wilson W. W. Predicting protein crystallization from a dilute solution property. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):361–365. doi: 10.1107/S0907444994001216. [DOI] [PubMed] [Google Scholar]
  11. Hirsch R. E., Lin M. J., Nagel R. L. The inhibition of hemoglobin C crystallization by hemoglobin F. J Biol Chem. 1988 Apr 25;263(12):5936–5939. [PubMed] [Google Scholar]
  12. Hitscherich C., Jr, Kaplan J., Allaman M., Wiencek J., Loll P. J. Static light scattering studies of OmpF porin: implications for integral membrane protein crystallization. Protein Sci. 2000 Aug;9(8):1559–1566. doi: 10.1110/ps.9.8.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuehner D. E., Heyer C., Rämsch C., Fornefeld U. M., Blanch H. W., Prausnitz J. M. Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements. Biophys J. 1997 Dec;73(6):3211–3224. doi: 10.1016/S0006-3495(97)78346-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neal B. L., Asthagiri D., Lenhoff A. M. Molecular origins of osmotic second virial coefficients of proteins. Biophys J. 1998 Nov;75(5):2469–2477. doi: 10.1016/S0006-3495(98)77691-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oakley A. J., Wilce M. C. Macromolecular crystallography as a tool for investigating drug, enzyme and receptor interactions. Clin Exp Pharmacol Physiol. 2000 Mar;27(3):145–151. doi: 10.1046/j.1440-1681.2000.03215.x. [DOI] [PubMed] [Google Scholar]
  16. Pjura P. E., Lenhoff A. M., Leonard S. A., Gittis A. G. Protein crystallization by design: chymotrypsinogen without precipitants. J Mol Biol. 2000 Jul 7;300(2):235–239. doi: 10.1006/jmbi.2000.3851. [DOI] [PubMed] [Google Scholar]
  17. Plant A. L., Locascio-Brown L., Haller W., Durst R. A. Immobilization of binding proteins on nonporous supports. Comparison of protein loading, activity, and stability. Appl Biochem Biotechnol. 1991 Jul;30(1):83–98. doi: 10.1007/BF02922025. [DOI] [PubMed] [Google Scholar]
  18. Ratnayake C. K., Regnier F. E. Lateral interaction between electrostatically adsorbed and covalently immobilized proteins on the surface of cation-exchange sorbents. J Chromatogr A. 1996 Aug 30;743(1):25–32. doi: 10.1016/0021-9673(96)00357-3. [DOI] [PubMed] [Google Scholar]
  19. Receveur V., Durand D., Desmadril M., Calmettes P. Repulsive interparticle interactions in a denatured protein solution revealed by small angle neutron scattering. FEBS Lett. 1998 Apr 10;426(1):57–61. doi: 10.1016/s0014-5793(98)00309-3. [DOI] [PubMed] [Google Scholar]
  20. SOPHIANOPOULOS A. J., RHODES C. K., HOLCOMB D. N., VAN HOLDE K. E. Physical studies of lysozyme. I. Characterization. J Biol Chem. 1962 Apr;237:1107–1112. [PubMed] [Google Scholar]
  21. Ståhlberg J., Jönsson B., Horváth C. Theory for electrostatic interaction chromatography of proteins. Anal Chem. 1991 Sep 1;63(17):1867–1874. doi: 10.1021/ac00017a036. [DOI] [PubMed] [Google Scholar]
  22. Sun Y., Jin X. H., Dong X. Y., Yu K., Zhou X. Z. Immobilized chymotrypsin on reversibly precipitable polymerized liposome. Appl Biochem Biotechnol. 1996 Mar;56(3):331–339. doi: 10.1007/BF02786963. [DOI] [PubMed] [Google Scholar]
  23. Sélo I., Négroni L., Créminon C., Grassi J., Wal J. M. Preferential labeling of alpha-amino N-terminal groups in peptides by biotin: application to the detection of specific anti-peptide antibodies by enzyme immunoassays. J Immunol Methods. 1996 Dec 15;199(2):127–138. doi: 10.1016/s0022-1759(96)00173-1. [DOI] [PubMed] [Google Scholar]
  24. Velev O. D., Kaler E. W., Lenhoff A. M. Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen. Biophys J. 1998 Dec;75(6):2682–2697. doi: 10.1016/S0006-3495(98)77713-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhang W. Z., Augusteyn R. C. On the interaction of alpha-crystallin with membranes. Curr Eye Res. 1994 Mar;13(3):225–230. doi: 10.3109/02713689408995781. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES