Abstract
Tissue characterization using ultrasound (US) scattering allows extraction of relevant cellular biophysical information noninvasively. Characterization of the level of red blood cell (RBC) aggregation is one of the proposed application. In the current paper, it is hypothesized that the microstructure of the RBCs is a main determinant of the US backscattered power. A simulation model was developed to study the effect of various RBC configurations on the backscattered power. It is an iterative dynamical model that considers the effect of the adhesive and repulsive forces between RBCs, and the effect of the flow. The method is shown to be efficient to model polydispersity in size, shape, and orientation of the aggregates due to the flow, and to relate these variations to the US backscattering properties. Three levels of aggregability at shear rates varying between 0.05 and 10 s(-1) were modeled at 40% hematocrit. The simulated backscattered power increased with a decrease in the shear rate or an increase in the RBC aggregability. Angular dependence of the backscattered power was observed. It is the first attempt to model the US power backscattered by RBC aggregates polydisperse in size and shape due to the shearing of the flow.
Full Text
The Full Text of this article is available as a PDF (410.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong J. K., Meiselman H. J., Fisher T. C. Evidence against macromolecular "bridging" as the mechanism of red blood cell aggregation induced by nonionic polymers. Biorheology. 1999;36(5-6):433–437. [PubMed] [Google Scholar]
- Berger N. E., Lucas R. J., Twersky V. Polydisperse scattering theory and comparisons with data for red blood cells. J Acoust Soc Am. 1991 Mar;89(3):1394–1401. doi: 10.1121/1.400540. [DOI] [PubMed] [Google Scholar]
- Bäumler H., Donath E., Krabi A., Knippel W., Budde A., Kiesewetter H. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran. Biorheology. 1996 Jul-Oct;33(4-5):333–351. doi: 10.1016/0006-355x(96)00026-1. [DOI] [PubMed] [Google Scholar]
- Chabanel A., Horellou M. H., Conard J., Samama M. M. Red blood cell aggregability in patients with a history of leg vein thrombosis: influence of post-thrombotic treatment. Br J Haematol. 1994 Sep;88(1):174–179. doi: 10.1111/j.1365-2141.1994.tb04993.x. [DOI] [PubMed] [Google Scholar]
- Chien S. Electrochemical interactions between erythrocyte surfaces. Thromb Res. 1976 May;8(2 Suppl):189–202. doi: 10.1016/0049-3848(76)90062-1. [DOI] [PubMed] [Google Scholar]
- Cloutier G., Qin Z. Shear rate dependence of ultrasound backscattering from blood samples characterized by different levels of erythrocyte aggregation. Ann Biomed Eng. 2000 Apr;28(4):399–407. doi: 10.1114/1.277. [DOI] [PubMed] [Google Scholar]
- Cloutier G., Qin Z. Ultrasound backscattering from non-aggregating and aggregating erythrocytes--a review. Biorheology. 1997 Nov-Dec;34(6):443–470. doi: 10.1016/s0006-355x(98)00026-2. [DOI] [PubMed] [Google Scholar]
- Donath E., Voigt A. Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model. Biophys J. 1986 Feb;49(2):493–499. doi: 10.1016/S0006-3495(86)83659-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fontaine I., Bertrand M., Cloutier G. A system-based approach to modeling the ultrasound signal backscattered by red blood cells. Biophys J. 1999 Nov;77(5):2387–2399. doi: 10.1016/S0006-3495(99)77076-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jan K. M., Chien S. Role of surface electric charge in red blood cell interactions. J Gen Physiol. 1973 May;61(5):638–654. doi: 10.1085/jgp.61.5.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jan K. M., Chien S. Role of the electrostatic repulsive force in red cell interactions. Bibl Anat. 1973;11:281–288. [PubMed] [Google Scholar]
- Lim B., Bascom P. A., Cobbold R. S. Particle and voxel approaches for simulating ultrasound backscattering from tissue. Ultrasound Med Biol. 1996;22(9):1237–1247. doi: 10.1016/s0301-5629(96)00145-7. [DOI] [PubMed] [Google Scholar]
- Lucas R. J., Twersky V. Inversion of ultrasonic scattering data for red blood cell suspensions under different flow conditions. J Acoust Soc Am. 1987 Sep;82(3):794–799. doi: 10.1121/1.395276. [DOI] [PubMed] [Google Scholar]
- Mo L. Y., Cobbold R. S. A unified approach to modeling the backscattered Doppler ultrasound from blood. IEEE Trans Biomed Eng. 1992 May;39(5):450–461. doi: 10.1109/10.135539. [DOI] [PubMed] [Google Scholar]
- Neumann F. J., Katus H. A., Hoberg E., Roebruck P., Braun M., Haupt H. M., Tillmanns H., Kübler W. Increased plasma viscosity and erythrocyte aggregation: indicators of an unfavourable clinical outcome in patients with unstable angina pectoris. Br Heart J. 1991 Dec;66(6):425–430. doi: 10.1136/hrt.66.6.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Razavian S. M., Atger V., Giral P., Cambillau M., Del-Pino M., Simon A. C., Moatti N., Levenson J. Influence of HDL subfractions on erythrocyte aggregation in hypercholesterolemic men. PCVMETRA Group. Arterioscler Thromb. 1994 Mar;14(3):361–366. doi: 10.1161/01.atv.14.3.361. [DOI] [PubMed] [Google Scholar]
- Razavian S. M., Del Pino M., Simon A., Levenson J. Increase in erythrocyte disaggregation shear stress in hypertension. Hypertension. 1992 Aug;20(2):247–252. doi: 10.1161/01.hyp.20.2.247. [DOI] [PubMed] [Google Scholar]
- Schmid-Schönbein H., Volger E. Red-cell aggregation and red-cell deformability in diabetes. Diabetes. 1976;25(2 Suppl):897–902. [PubMed] [Google Scholar]
- Shehada R. E., Cobbold R. S., Mo L. Y. Aggregation effects in whole blood: influence of time and shear rate measured using ultrasound. Biorheology. 1994 Jan-Feb;31(1):115–135. doi: 10.3233/bir-1994-31110. [DOI] [PubMed] [Google Scholar]
- Sigel B., Machi J., Beitler J. C., Justin J. R., Coelho J. C. Variable ultrasound echogenicity in flowing blood. Science. 1982 Dec 24;218(4579):1321–1323. doi: 10.1126/science.7146914. [DOI] [PubMed] [Google Scholar]
- Twersky V. Transparency of pair-correlated, random distributions of small scatterers, with applications to the cornea. J Opt Soc Am. 1975 May;65(5):524–530. doi: 10.1364/josa.65.000524. [DOI] [PubMed] [Google Scholar]
- Ursea R., Coleman D. J., Silverman R. H., Lizzi F. L., Daly S. M., Harrison W. Correlation of high-frequency ultrasound backscatter with tumor microstructure in iris melanoma. Ophthalmology. 1998 May;105(5):906–912. doi: 10.1016/S0161-6420(98)95036-9. [DOI] [PubMed] [Google Scholar]
- Varghese T., Donohue K. D. Characterization of tissue microstructure scatterer distribution with spectral correlation. Ultrason Imaging. 1993 Jul;15(3):238–254. doi: 10.1177/016173469301500304. [DOI] [PubMed] [Google Scholar]
- Weng X., Cloutier G., Beaulieu R., Roederer G. O. Influence of acute-phase proteins on erythrocyte aggregation. Am J Physiol. 1996 Dec;271(6 Pt 2):H2346–H2352. doi: 10.1152/ajpheart.1996.271.6.H2346. [DOI] [PubMed] [Google Scholar]
- Yuan Y. W., Shung K. K. Ultrasonic backscatter from flowing whole blood. I: Dependence on shear rate and hematocrit. J Acoust Soc Am. 1988 Jul;84(1):52–58. doi: 10.1121/1.397238. [DOI] [PubMed] [Google Scholar]
- Zhang J., Rose J. L., Shung K. K. A computer model for simulating ultrasonic scattering in biological tissues with high scatterer concentration. Ultrasound Med Biol. 1994;20(9):903–913. doi: 10.1016/0301-5629(94)90050-7. [DOI] [PubMed] [Google Scholar]
- van der Heiden M. S., de Kroon M. G., Bom N., Borst C. Ultrasound backscatter at 30 MHz from human blood: influence of rouleau size affected by blood modification and shear rate. Ultrasound Med Biol. 1995;21(6):817–826. doi: 10.1016/0301-5629(95)00012-g. [DOI] [PubMed] [Google Scholar]