Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):1809–1817. doi: 10.1016/S0006-3495(02)75531-8

Binding and diffusion of CheR molecules within a cluster of membrane receptors.

Matthew D Levin 1, Thomas S Shimizu 1, Dennis Bray 1
PMCID: PMC1301978  PMID: 11916840

Abstract

Adaptation of the attractant response in Escherichia coli is attributable to the methylation of its transmembrane chemotactic receptors by the methyltransferase CheR. This protein contains two binding domains, one for the sites of methylation themselves and the other for a flexible tether at the C terminus of the receptor. We have explored the theoretical consequences of this binding geometry for a CheR molecule associated with a cluster of chemotactic receptors. Calculations show that the CheR molecule will bind with high net affinity to the receptor lattice, having a high probability of being attached by one or both of its domains at any instant of time. Because of the relatively low affinity of its individual domains and the close proximity of neighboring receptors, it is likely that when one domain unbinds it will reattach to the array before the other domain unbinds. Stochastic simulations show that the enzyme will move through the receptor cluster in a hand-over-hand fashion, like a gibbon swinging through the branches of a tree. We explore the possible consequences of this motion, which we term "molecular brachiation", for chemotactic adaptation and suggest that a similar mechanism may be operative in other large assemblies of protein molecules.

Full Text

The Full Text of this article is available as a PDF (284.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage J. P. Bacterial tactic responses. Adv Microb Physiol. 1999;41:229–289. doi: 10.1016/s0065-2911(08)60168-x. [DOI] [PubMed] [Google Scholar]
  2. Barnakov A. N., Barnakova L. A., Hazelbauer G. L. Efficient adaptational demethylation of chemoreceptors requires the same enzyme-docking site as efficient methylation. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10667–10672. doi: 10.1073/pnas.96.19.10667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnakov A. N., Barnakova L. A., Hazelbauer G. L. Location of the receptor-interaction site on CheB, the methylesterase response regulator of bacterial chemotaxis. J Biol Chem. 2001 Jul 2;276(35):32984–32989. doi: 10.1074/jbc.M105925200. [DOI] [PubMed] [Google Scholar]
  4. Bass R. B., Coleman M. D., Falke J. J. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies. Biochemistry. 1999 Jul 20;38(29):9317–9327. doi: 10.1021/bi9908179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borczuk A., Staub A., Stock J. Demethylation of bacterial chemoreceptors is inhibited by attractant stimuli in the complete absence of the regulatory domain of the demethylating enzyme. Biochem Biophys Res Commun. 1986 Dec 30;141(3):918–923. doi: 10.1016/s0006-291x(86)80130-9. [DOI] [PubMed] [Google Scholar]
  7. Bren A., Eisenbach M. How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J Bacteriol. 2000 Dec;182(24):6865–6873. doi: 10.1128/jb.182.24.6865-6873.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Camacho C. J., Kimura S. R., DeLisi C., Vajda S. Kinetics of desolvation-mediated protein-protein binding. Biophys J. 2000 Mar;78(3):1094–1105. doi: 10.1016/S0006-3495(00)76668-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeFranco A. L., Koshland D. E., Jr Molecular cloning of chemotaxis genes and overproduction of gene products in the bacterial sensing system. J Bacteriol. 1981 Aug;147(2):390–400. doi: 10.1128/jb.147.2.390-400.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Djordjevic S., Stock A. M. Chemotaxis receptor recognition by protein methyltransferase CheR. Nat Struct Biol. 1998 Jun;5(6):446–450. doi: 10.1038/nsb0698-446. [DOI] [PubMed] [Google Scholar]
  11. Djordjevic S., Stock A. M. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. Structure. 1997 Apr 15;5(4):545–558. doi: 10.1016/s0969-2126(97)00210-4. [DOI] [PubMed] [Google Scholar]
  12. Dröge P., Müller-Hill B. High local protein concentrations at promoters: strategies in prokaryotic and eukaryotic cells. Bioessays. 2001 Feb;23(2):179–183. doi: 10.1002/1521-1878(200102)23:2<179::AID-BIES1025>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  13. Falke J. J., Bass R. B., Butler S. L., Chervitz S. A., Danielson M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol. 1997;13:457–512. doi: 10.1146/annurev.cellbio.13.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Falke J. J., Hazelbauer G. L. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci. 2001 Apr;26(4):257–265. doi: 10.1016/s0968-0004(00)01770-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Feng X., Baumgartner J. W., Hazelbauer G. L. High- and low-abundance chemoreceptors in Escherichia coli: differential activities associated with closely related cytoplasmic domains. J Bacteriol. 1997 Nov;179(21):6714–6720. doi: 10.1128/jb.179.21.6714-6720.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feng X., Lilly A. A., Hazelbauer G. L. Enhanced function conferred on low-abundance chemoreceptor Trg by a methyltransferase-docking site. J Bacteriol. 1999 May;181(10):3164–3171. doi: 10.1128/jb.181.10.3164-3171.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gegner J. A., Graham D. R., Roth A. F., Dahlquist F. W. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell. 1992 Sep 18;70(6):975–982. doi: 10.1016/0092-8674(92)90247-a. [DOI] [PubMed] [Google Scholar]
  18. Gestwicki J. E., Lamanna A. C., Harshey R. M., McCarter L. L., Kiessling L. L., Adler J. Evolutionary conservation of methyl-accepting chemotaxis protein location in Bacteria and Archaea. J Bacteriol. 2000 Nov;182(22):6499–6502. doi: 10.1128/jb.182.22.6499-6502.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hazelbauer G. L., Harayama S. Sensory transduction in bacterial chemotaxis. Int Rev Cytol. 1983;81:33–70. doi: 10.1016/s0074-7696(08)62334-7. [DOI] [PubMed] [Google Scholar]
  20. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  21. Kim K. K., Yokota H., Kim S. H. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature. 1999 Aug 19;400(6746):787–792. doi: 10.1038/23512. [DOI] [PubMed] [Google Scholar]
  22. Lagerholm B. C., Thompson N. L. Theory for ligand rebinding at cell membrane surfaces. Biophys J. 1998 Mar;74(3):1215–1228. doi: 10.1016/S0006-3495(98)77836-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Le Moual H., Koshland D. E., Jr Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol. 1996 Aug 30;261(4):568–585. doi: 10.1006/jmbi.1996.0483. [DOI] [PubMed] [Google Scholar]
  24. Le Moual H., Quang T., Koshland D. E., Jr Methylation of the Escherichia coli chemotaxis receptors: intra- and interdimer mechanisms. Biochemistry. 1997 Oct 28;36(43):13441–13448. doi: 10.1021/bi9713207. [DOI] [PubMed] [Google Scholar]
  25. Le Novère N., Shimizu T. S. STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics. 2001 Jun;17(6):575–576. doi: 10.1093/bioinformatics/17.6.575. [DOI] [PubMed] [Google Scholar]
  26. Li J., Li G., Weis R. M. The serine chemoreceptor from Escherichia coli is methylated through an inter-dimer process. Biochemistry. 1997 Sep 30;36(39):11851–11857. doi: 10.1021/bi971510h. [DOI] [PubMed] [Google Scholar]
  27. Liu Y., Levit M., Lurz R., Surette M. G., Stock J. B. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBO J. 1997 Dec 15;16(24):7231–7240. doi: 10.1093/emboj/16.24.7231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maddock J. R., Shapiro L. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science. 1993 Mar 19;259(5102):1717–1723. doi: 10.1126/science.8456299. [DOI] [PubMed] [Google Scholar]
  29. Maki N., Gestwicki J. E., Lake E. M., Kiessling L. L., Adler J. Motility and chemotaxis of filamentous cells of Escherichia coli. J Bacteriol. 2000 Aug;182(15):4337–4342. doi: 10.1128/jb.182.15.4337-4342.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McNally D. F., Matsumura P. Bacterial chemotaxis signaling complexes: formation of a CheA/CheW complex enhances autophosphorylation and affinity for CheY. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6269–6273. doi: 10.1073/pnas.88.14.6269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morton-Firth C. J., Bray D. Predicting temporal fluctuations in an intracellular signalling pathway. J Theor Biol. 1998 May 7;192(1):117–128. doi: 10.1006/jtbi.1997.0651. [DOI] [PubMed] [Google Scholar]
  32. Mowbray S. L., Sandgren M. O. Chemotaxis receptors: a progress report on structure and function. J Struct Biol. 1998 Dec 15;124(2-3):257–275. doi: 10.1006/jsbi.1998.4043. [DOI] [PubMed] [Google Scholar]
  33. Northrup S. H., Erickson H. P. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3338–3342. doi: 10.1073/pnas.89.8.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Okumura H., Nishiyama S., Sasaki A., Homma M., Kawagishi I. Chemotactic adaptation is altered by changes in the carboxy-terminal sequence conserved among the major methyl-accepting chemoreceptors. J Bacteriol. 1998 Apr;180(7):1862–1868. doi: 10.1128/jb.180.7.1862-1868.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sanders D. A., Koshland D. E., Jr Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8425–8429. doi: 10.1073/pnas.85.22.8425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schuster S. C., Swanson R. V., Alex L. A., Bourret R. B., Simon M. I. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature. 1993 Sep 23;365(6444):343–347. doi: 10.1038/365343a0. [DOI] [PubMed] [Google Scholar]
  37. Shapiro M. J., Panomitros D., Koshland D. E., Jr Interactions between the methylation sites of the Escherichia coli aspartate receptor mediated by the methyltransferase. J Biol Chem. 1995 Jan 13;270(2):751–755. doi: 10.1074/jbc.270.2.751. [DOI] [PubMed] [Google Scholar]
  38. Shimizu T. S., Le Novère N., Levin M. D., Beavil A. J., Sutton B. J., Bray D. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat Cell Biol. 2000 Nov;2(11):792–796. doi: 10.1038/35041030. [DOI] [PubMed] [Google Scholar]
  39. Shiomi D., Okumura H., Homma M., Kawagishi I. The aspartate chemoreceptor Tar is effectively methylated by binding to the methyltransferase mainly through hydrophobic interaction. Mol Microbiol. 2000 Apr;36(1):132–140. doi: 10.1046/j.1365-2958.2000.01834.x. [DOI] [PubMed] [Google Scholar]
  40. Simms S. A., Keane M. G., Stock J. Multiple forms of the CheB methylesterase in bacterial chemosensing. J Biol Chem. 1985 Aug 25;260(18):10161–10168. [PubMed] [Google Scholar]
  41. Simms S. A., Stock A. M., Stock J. B. Purification and characterization of the S-adenosylmethionine:glutamyl methyltransferase that modifies membrane chemoreceptor proteins in bacteria. J Biol Chem. 1987 Jun 25;262(18):8537–8543. [PubMed] [Google Scholar]
  42. Simms S. A., Subbaramaiah K. The kinetic mechanism of S-adenosyl-L-methionine: glutamylmethyltransferase from Salmonella typhimurium. J Biol Chem. 1991 Jul 5;266(19):12741–12746. [PubMed] [Google Scholar]
  43. Terwilliger T. C., Wang J. Y., Koshland D. E., Jr Kinetics of receptor modification. The multiply methylated aspartate receptors involved in bacterial chemotaxis. J Biol Chem. 1986 Aug 15;261(23):10814–10820. [PubMed] [Google Scholar]
  44. Timpe L. C., Peller L. A random flight chain model for the tether of the Shaker K+ channel inactivation domain. Biophys J. 1995 Dec;69(6):2415–2418. doi: 10.1016/S0006-3495(95)80111-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Weerasuriya S., Schneider B. M., Manson M. D. Chimeric chemoreceptors in Escherichia coli: signaling properties of Tar-Tap and Tap-Tar hybrids. J Bacteriol. 1998 Feb;180(4):914–920. doi: 10.1128/jb.180.4.914-920.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wootton J. C., Drummond M. H. The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng. 1989 May;2(7):535–543. doi: 10.1093/protein/2.7.535. [DOI] [PubMed] [Google Scholar]
  47. Wu J., Li J., Li G., Long D. G., Weis R. M. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry. 1996 Apr 16;35(15):4984–4993. doi: 10.1021/bi9530189. [DOI] [PubMed] [Google Scholar]
  48. Zhulin I. B. The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol. 2001;45:157–198. doi: 10.1016/s0065-2911(01)45004-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES