Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):1828–1834. doi: 10.1016/S0006-3495(02)75533-1

Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe.

George Georgiou 1, Sukhvinder S Bahra 1, Alan R Mackie 1, Caroline A Wolfe 1, Paul O'Shea 1, Shab Ladha 1, Nelson Fernandez 1, Richard J Cherry 1
PMCID: PMC1301980  PMID: 11916842

Abstract

The mobility of cell surface MHC class I molecules on HeLa cells was measured by fluorescence recovery after photobleaching (FRAP). The probe used for these studies was the phycobiliprotein R-phycoerythrin coupled to Fab fragments of a monoclonal antibody specific for human monomorphic MHC class I molecules. It was found that the recovery curves could be equally well fitted by either a random diffusion model with an immobile component or by an anomalous diffusion model. In the latter case, the anomalous diffusion exponent was consistent with that previously determined by single-particle tracking (SPT) experiments using the same probe (P. R. Smith, I. E. G. Morrison, K. M. Wilson, N. Fernandez, and R. J. Cherry. 1999. Biophys. J. 76:3331-3344). The FRAP experiments, however, yielded a considerably higher value of D(0), the diffusion coefficient for a time interval of 1 s. To determine whether the results were probe dependent, FRAP measurements were also performed with the same monoclonal antibody labeled with Oregon Green. These experiments gave similar results to those obtained with the phycoerythrin probe. FRAP experiments with the lipid probe 5-N-(octadecanoyl) aminofluoroscein (ODAF) bound to HeLa cells gave typical results for lipid diffusion. Overall, our observations and analysis are consistent with anomalous diffusion of MHC class I diffusion on HeLa cells, but quantitative differences between FRAP and SPT data remain to be explained.

Full Text

The Full Text of this article is available as a PDF (126.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Edidin M., Stroynowski I. Differences between the lateral organization of conventional and inositol phospholipid-anchored membrane proteins. A further definition of micrometer scale membrane domains. J Cell Biol. 1991 Mar;112(6):1143–1150. doi: 10.1083/jcb.112.6.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edidin M., Zúiga M. C., Sheetz M. P. Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3378–3382. doi: 10.1073/pnas.91.8.3378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feder T. J., Brust-Mascher I., Slattery J. P., Baird B., Webb W. W. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J. 1996 Jun;70(6):2767–2773. doi: 10.1016/S0006-3495(96)79846-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jovin T. M., Vaz W. L. Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods. Methods Enzymol. 1989;172:471–513. doi: 10.1016/s0076-6879(89)72030-9. [DOI] [PubMed] [Google Scholar]
  6. Kucik D. F., Elson E. L., Sheetz M. P. Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys J. 1999 Jan;76(1 Pt 1):314–322. doi: 10.1016/S0006-3495(99)77198-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kusumi A., Sako Y. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol. 1996 Aug;8(4):566–574. doi: 10.1016/s0955-0674(96)80036-6. [DOI] [PubMed] [Google Scholar]
  8. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ladha S., Mackie A. R., Clark D. C. Cheek cell membrane fluidity measured by fluorescence recovery after photobleaching and steady-state fluorescence anisotropy. J Membr Biol. 1994 Nov;142(2):223–228. doi: 10.1007/BF00234944. [DOI] [PubMed] [Google Scholar]
  10. Ladha S., Mackie A. R., Harvey L. J., Clark D. C., Lea E. J., Brullemans M., Duclohier H. Lateral diffusion in planar lipid bilayers: a fluorescence recovery after photobleaching investigation of its modulation by lipid composition, cholesterol, or alamethicin content and divalent cations. Biophys J. 1996 Sep;71(3):1364–1373. doi: 10.1016/S0006-3495(96)79339-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sako Y., Kusumi A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J Cell Biol. 1995 Jun;129(6):1559–1574. doi: 10.1083/jcb.129.6.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sako Y., Kusumi A. Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol. 1994 Jun;125(6):1251–1264. doi: 10.1083/jcb.125.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Salomé L., Cazeils J. L., Lopez A., Tocanne J. F. Characterization of membrane domains by FRAP experiments at variable observation areas. Eur Biophys J. 1998;27(4):391–402. doi: 10.1007/s002490050146. [DOI] [PubMed] [Google Scholar]
  14. Saxton M. J. Anomalous diffusion due to binding: a Monte Carlo study. Biophys J. 1996 Mar;70(3):1250–1262. doi: 10.1016/S0006-3495(96)79682-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  16. Schram V., Tocanne J. F., Lopez A. Influence of obstacles on lipid lateral diffusion: computer simulation of FRAP experiments and application to proteoliposomes and biomembranes. Eur Biophys J. 1994;23(5):337–348. doi: 10.1007/BF00188657. [DOI] [PubMed] [Google Scholar]
  17. Simson R., Sheets E. D., Jacobson K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J. 1995 Sep;69(3):989–993. doi: 10.1016/S0006-3495(95)79972-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Simson R., Yang B., Moore S. E., Doherty P., Walsh F. S., Jacobson K. A. Structural mosaicism on the submicron scale in the plasma membrane. Biophys J. 1998 Jan;74(1):297–308. doi: 10.1016/S0006-3495(98)77787-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith P. R., Morrison I. E., Wilson K. M., Fernández N., Cherry R. J. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J. 1999 Jun;76(6):3331–3344. doi: 10.1016/S0006-3495(99)77486-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Triantafilou K., Triantafilou M., Wilson K. M. Phycobiliprotein-Fab conjugates as probes for single particle fluorescence imaging. Cytometry. 2000 Nov 1;41(3):226–234. doi: 10.1002/1097-0320(20001101)41:3<226::aid-cyto11>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  21. Wilson K. M., Morrison I. E., Smith P. R., Fernandez N., Cherry R. J. Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J Cell Sci. 1996 Aug;109(Pt 8):2101–2109. doi: 10.1242/jcs.109.8.2101. [DOI] [PubMed] [Google Scholar]
  22. Wolf D. E., Edidin M., Dragsten P. R. Effect of bleaching light on measurements of lateral diffusion in cell membranes by the fluorescence photobleaching recovery method. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2043–2045. doi: 10.1073/pnas.77.4.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yguerabide J., Schmidt J. A., Yguerabide E. E. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J. 1982 Oct;40(1):69–75. doi: 10.1016/S0006-3495(82)84459-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang F., Lee G. M., Jacobson K. Protein lateral mobility as a reflection of membrane microstructure. Bioessays. 1993 Sep;15(9):579–588. doi: 10.1002/bies.950150903. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES