Abstract
A conceptual temporal and spatial gap exists between the first encounter of a cell with an adhesive substrate and the advanced stages of focal adhesion formation. Although ample information is available on focal adhesions structure and function, the mechanism of the first interaction events and the nature of the molecules mediating them are largely unknown. In this paper we identify cell-surface-associated hyaluronan as a mediator and modulator of the first steps of adhesion of A6 and other cells to conventional tissue culture substrates as well as to the surfaces of calcium-(R,R)-tartrate tetrahydrate crystals. Treatment of A6 cells with hyaluronidase suppresses their rapid interactions with these adhesive substrates, and incubation of either the hyaluronidase-treated cells or the substrate with hyaluronan restores cell adhesion. In contrast, excess hyaluronan on both the cells and the substrate strongly inhibits adhesion. We thus propose that cell-surface-associated hyaluronan can mediate and modulate cell-matrix adhesion at the very first encounter with the substrate. It may promote it through the establishment of exquisitely stereospecific chemical interactions or inhibit it by virtue of steric exclusion and/or electrostatic repulsion.
Full Text
The Full Text of this article is available as a PDF (531.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
- Bajorath J. Molecular organization, structural features, and ligand binding characteristics of CD44, a highly variable cell surface glycoprotein with multiple functions. Proteins. 2000 May 1;39(2):103–111. [PubMed] [Google Scholar]
- Bernfield M., Götte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729. [DOI] [PubMed] [Google Scholar]
- Bono P., Rubin K., Higgins J. M., Hynes R. O. Layilin, a novel integral membrane protein, is a hyaluronan receptor. Mol Biol Cell. 2001 Apr;12(4):891–900. doi: 10.1091/mbc.12.4.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W. Y., Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999 Mar-Apr;7(2):79–89. doi: 10.1046/j.1524-475x.1999.00079.x. [DOI] [PubMed] [Google Scholar]
- Clark E. A., Brugge J. S. Integrins and signal transduction pathways: the road taken. Science. 1995 Apr 14;268(5208):233–239. doi: 10.1126/science.7716514. [DOI] [PubMed] [Google Scholar]
- Critchley D. R. Focal adhesions - the cytoskeletal connection. Curr Opin Cell Biol. 2000 Feb;12(1):133–139. doi: 10.1016/s0955-0674(99)00067-8. [DOI] [PubMed] [Google Scholar]
- Delpech B., Girard N., Bertrand P., Courel M. N., Chauzy C., Delpech A. Hyaluronan: fundamental principles and applications in cancer. J Intern Med. 1997 Jul;242(1):41–48. doi: 10.1046/j.1365-2796.1997.00172.x. [DOI] [PubMed] [Google Scholar]
- Entwistle J., Hall C. L., Turley E. A. HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem. 1996 Jun 15;61(4):569–577. doi: 10.1002/(sici)1097-4644(19960616)61:4<569::aid-jcb10>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- Evanko S. P., Angello J. C., Wight T. N. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1999 Apr;19(4):1004–1013. doi: 10.1161/01.atv.19.4.1004. [DOI] [PubMed] [Google Scholar]
- Fessler J. H., Fessler L. I. Electron microscopic visualization of the polysaccharide hyaluronic acid. Proc Natl Acad Sci U S A. 1966 Jul;56(1):141–147. doi: 10.1073/pnas.56.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger B., Bershadsky A. Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol. 2001 Oct;13(5):584–592. doi: 10.1016/s0955-0674(00)00255-6. [DOI] [PubMed] [Google Scholar]
- Giancotti F. G., Ruoslahti E. Integrin signaling. Science. 1999 Aug 13;285(5430):1028–1032. doi: 10.1126/science.285.5430.1028. [DOI] [PubMed] [Google Scholar]
- Hanein D., Geiger B., Addadi L. Differential adhesion of cells to enantiomorphous crystal surfaces. Science. 1994 Mar 11;263(5152):1413–1416. doi: 10.1126/science.8128221. [DOI] [PubMed] [Google Scholar]
- Hanein D., Sabanay H., Addadi L., Geiger B. Selective interactions of cells with crystal surfaces. Implications for the mechanism of cell adhesion. J Cell Sci. 1993 Feb;104(Pt 2):275–288. doi: 10.1242/jcs.104.2.275. [DOI] [PubMed] [Google Scholar]
- Hanein D., Yarden A., Sabanay H., Addadi L., Geiger B. Cell-adhesion to crystal surfaces. Adhesion-induced physiological cell death. Cell Adhes Commun. 1996 Nov;4(4-5):341–354. doi: 10.3109/15419069609010777. [DOI] [PubMed] [Google Scholar]
- Heldin P., Pertoft H. Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Exp Cell Res. 1993 Oct;208(2):422–429. doi: 10.1006/excr.1993.1264. [DOI] [PubMed] [Google Scholar]
- Hua Q., Knudson C. B., Knudson W. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J Cell Sci. 1993 Sep;106(Pt 1):365–375. doi: 10.1242/jcs.106.1.365. [DOI] [PubMed] [Google Scholar]
- Hynes R. O. Cell adhesion: old and new questions. Trends Cell Biol. 1999 Dec;9(12):M33–M37. [PubMed] [Google Scholar]
- Ilangumaran S., Borisch B., Hoessli D. C. Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma. 1999 Nov;35(5-6):455–469. doi: 10.1080/10428199909169610. [DOI] [PubMed] [Google Scholar]
- Israelachvili J., Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996 Jan 18;379(6562):219–225. doi: 10.1038/379219a0. [DOI] [PubMed] [Google Scholar]
- Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 1993 Sep;9(9):317–321. doi: 10.1016/0168-9525(93)90250-l. [DOI] [PubMed] [Google Scholar]
- Knudson C. B., Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol. 2001 Apr;12(2):69–78. doi: 10.1006/scdb.2000.0243. [DOI] [PubMed] [Google Scholar]
- Knudson C. B., Nofal G. A., Pamintuan L., Aguiar D. J. The chondrocyte pericellular matrix: a model for hyaluronan-mediated cell-matrix interactions. Biochem Soc Trans. 1999 Feb;27(2):142–147. doi: 10.1042/bst0270142. [DOI] [PubMed] [Google Scholar]
- Kobayashi Y., Okamoto A., Nishinari K. Viscoelasticity of hyaluronic acid with different molecular weights. Biorheology. 1994 May-Jun;31(3):235–244. doi: 10.3233/bir-1994-31302. [DOI] [PubMed] [Google Scholar]
- Lark M. W., Culp L. A. Turnover of heparan sulfate proteoglycans from substratum adhesion sites of murine fibroblasts. J Biol Chem. 1984 Jan 10;259(1):212–217. [PubMed] [Google Scholar]
- Laterra J., Silbert J. E., Culp L. A. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J Cell Biol. 1983 Jan;96(1):112–123. doi: 10.1083/jcb.96.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lauffenburger D. A., Horwitz A. F. Cell migration: a physically integrated molecular process. Cell. 1996 Feb 9;84(3):359–369. doi: 10.1016/s0092-8674(00)81280-5. [DOI] [PubMed] [Google Scholar]
- Laurent T. C., Fraser J. R. Hyaluronan. FASEB J. 1992 Apr;6(7):2397–2404. [PubMed] [Google Scholar]
- Lee G. M., Johnstone B., Jacobson K., Caterson B. The dynamic structure of the pericellular matrix on living cells. J Cell Biol. 1993 Dec;123(6 Pt 2):1899–1907. doi: 10.1083/jcb.123.6.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levick J. R. Microvascular architecture and exchange in synovial joints. Microcirculation. 1995 Sep;2(3):217–233. doi: 10.3109/10739689509146768. [DOI] [PubMed] [Google Scholar]
- McBride W. H., Bard J. B. Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med. 1979 Feb 1;149(2):507–515. doi: 10.1084/jem.149.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikelsaar R. H., Scott J. E. Molecular modelling of secondary and tertiary structures of hyaluronan, compared with electron microscopy and NMR data. Possible sheets and tubular structures in aqueous solution. Glycoconj J. 1994 Apr;11(2):65–71. doi: 10.1007/BF00731145. [DOI] [PubMed] [Google Scholar]
- Oliferenko S., Kaverina I., Small J. V., Huber L. A. Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth. J Cell Biol. 2000 Mar 20;148(6):1159–1164. doi: 10.1083/jcb.148.6.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ren Z. X., Brewton R. G., Mayne R. An analysis by rotary shadowing of the structure of the mammalian vitreous humor and zonular apparatus. J Struct Biol. 1991 Feb;106(1):57–63. doi: 10.1016/1047-8477(91)90062-2. [DOI] [PubMed] [Google Scholar]
- Rossiter H., Alon R., Kupper T. S. Selectins, T-cell rolling and inflammation. Mol Med Today. 1997 May;3(5):214–222. doi: 10.1016/S1357-4310(97)01040-X. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E. Structure and biology of proteoglycans. Annu Rev Cell Biol. 1988;4:229–255. doi: 10.1146/annurev.cb.04.110188.001305. [DOI] [PubMed] [Google Scholar]
- Schoenwaelder S. M., Burridge K. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol. 1999 Apr;11(2):274–286. doi: 10.1016/s0955-0674(99)80037-4. [DOI] [PubMed] [Google Scholar]
- Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
- Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol. 1995 Oct;7(5):619–627. doi: 10.1016/0955-0674(95)80102-2. [DOI] [PubMed] [Google Scholar]
- Toole B. P. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001 Apr;12(2):79–87. doi: 10.1006/scdb.2000.0244. [DOI] [PubMed] [Google Scholar]
- Toole B. P. Hyaluronan in morphogenesis. J Intern Med. 1997 Jul;242(1):35–40. doi: 10.1046/j.1365-2796.1997.00171.x. [DOI] [PubMed] [Google Scholar]
- Weigel P. H., Hascall V. C., Tammi M. Hyaluronan synthases. J Biol Chem. 1997 May 30;272(22):13997–14000. doi: 10.1074/jbc.272.22.13997. [DOI] [PubMed] [Google Scholar]
- Wight T. N., Kinsella M. G., Qwarnström E. E. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol. 1992 Oct;4(5):793–801. doi: 10.1016/0955-0674(92)90102-i. [DOI] [PubMed] [Google Scholar]
- Yamada K. M. Integrin signaling. Matrix Biol. 1997 Oct;16(4):137–141. doi: 10.1016/s0945-053x(97)90001-9. [DOI] [PubMed] [Google Scholar]
- Zamir E., Geiger B. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci. 2001 Oct;114(Pt 20):3583–3590. doi: 10.1242/jcs.114.20.3583. [DOI] [PubMed] [Google Scholar]
- Zimmerman E., Addadi L., Geiger B. Effects of surface-bound water and surface stereochemistry on cell adhesion to crystal surfaces. J Struct Biol. 1999 Mar;125(1):25–38. doi: 10.1006/jsbi.1998.4061. [DOI] [PubMed] [Google Scholar]