Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):1884–1893. doi: 10.1016/S0006-3495(02)75538-0

Modeling of the pore domain of the GLUR1 channel: homology with K+ channel and binding of channel blockers.

Denis B Tikhonov 1, Jan R Mellor 1, Peter N R Usherwood 1, Lev G Magazanik 1
PMCID: PMC1301985  PMID: 11916847

Abstract

Molecular models of the M2 segments of the GluR1 channel have been elaborated using a molecular mechanics approach. The models are based on the homology between pore-lining segments of AMPA receptor channels and the KcsA K+ channel and on cyclic H bonds at the Q/R site of the AMPA receptor channel. The N-terminal region of an M2 segment of the channel is assumed, like that of the K+ channel, to adopt a helical conformation. Due to a deletion, the C-terminal end of the M2 segment of the AMPA receptor is more stretched than that of the K+ channel. As a result, only a single oxygen ring may be exposed to the AMPA receptor channel pore. Data on the block of AMPA receptor channels by dicationic adamantane derivatives have been used to select the most relevant model. The model with the oxygen of a Gly residue (position +2 from the Q/R site) exposed to the pore best fits the experimental data. This model also fits experimental data for another class of AMPA receptor antagonists, the polyamine amides. According to the model, the side-chains of the C-terminal residues are involved in intra-receptor interactions that stabilize the structure of the channel rather than in interactions with ions in the pore.

Full Text

The Full Text of this article is available as a PDF (379.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arias H. R. Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. Biochim Biophys Acta. 1998 Aug 21;1376(2):173–220. doi: 10.1016/s0304-4157(98)00004-5. [DOI] [PubMed] [Google Scholar]
  2. Bolshakov K. V., Tikhonov D. B., Gmiro V. E., Magazanik L. G. Different arrangement of hydrophobic and nucleophilic components of channel binding sites in N-methyl-D-aspartate and AMPA receptors of rat brain is revealed by channel blockade. Neurosci Lett. 2000 Sep 15;291(2):101–104. doi: 10.1016/s0304-3940(00)01386-0. [DOI] [PubMed] [Google Scholar]
  3. Bouzat C., Barrantes F. J. Assigning functions to residues in the acetylcholine receptor channel region (review). Mol Membr Biol. 1997 Oct-Dec;14(4):167–177. doi: 10.3109/09687689709048179. [DOI] [PubMed] [Google Scholar]
  4. Brackley P. T., Bell D. R., Choi S. K., Nakanishi K., Usherwood P. N. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J Pharmacol Exp Ther. 1993 Sep;266(3):1573–1580. [PubMed] [Google Scholar]
  5. Burnashev N., Schoepfer R., Monyer H., Ruppersberg J. P., Günther W., Seeburg P. H., Sakmann B. Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science. 1992 Sep 4;257(5075):1415–1419. doi: 10.1126/science.1382314. [DOI] [PubMed] [Google Scholar]
  6. Burnashev N., Villarroel A., Sakmann B. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol. 1996 Oct 1;496(Pt 1):165–173. doi: 10.1113/jphysiol.1996.sp021674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bähring R., Bowie D., Benveniste M., Mayer M. L. Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines. J Physiol. 1997 Aug 1;502(Pt 3):575–589. doi: 10.1111/j.1469-7793.1997.575bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bähring R., Mayer M. L. An analysis of philanthotoxin block for recombinant rat GluR6(Q) glutamate receptor channels. J Physiol. 1998 Jun 15;509(Pt 3):635–650. doi: 10.1111/j.1469-7793.1998.635bm.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campos-Ortega J. A. Numb diverts notch pathway off the tramtrack. Neuron. 1996 Jul;17(1):1–4. doi: 10.1016/s0896-6273(00)80274-3. [DOI] [PubMed] [Google Scholar]
  10. Chao J., Seiler N., Renault J., Kashiwagi K., Masuko T., Igarashi K., Williams K. N1-dansyl-spermine and N1-(n-octanesulfonyl)-spermine, novel glutamate receptor antagonists: block and permeation of N-methyl-D-aspartate receptors. Mol Pharmacol. 1997 May;51(5):861–871. doi: 10.1124/mol.51.5.861. [DOI] [PubMed] [Google Scholar]
  11. Chen G. Q., Cui C., Mayer M. L., Gouaux E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature. 1999 Dec 16;402(6763):817–821. doi: 10.1038/45568. [DOI] [PubMed] [Google Scholar]
  12. Cu C., Bähring R., Mayer M. L., Cui C. The role of hydrophobic interactions in binding of polyamines to non NMDA receptor ion channels. Neuropharmacology. 1998 Oct-Nov;37(10-11):1381–1391. doi: 10.1016/s0028-3908(98)00112-9. [DOI] [PubMed] [Google Scholar]
  13. Dingledine R., Borges K., Bowie D., Traynelis S. F. The glutamate receptor ion channels. Pharmacol Rev. 1999 Mar;51(1):7–61. [PubMed] [Google Scholar]
  14. Dingledine R., Hume R. I., Heinemann S. F. Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels. J Neurosci. 1992 Oct;12(10):4080–4087. doi: 10.1523/JNEUROSCI.12-10-04080.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  16. Ferrer-Montiel A. V., Merino J. M., Planells-Cases R., Sun W., Montal M. Structural determinants of the blocker binding site in glutamate and NMDA receptor channels. Neuropharmacology. 1998;37(2):139–147. doi: 10.1016/s0028-3908(98)00007-0. [DOI] [PubMed] [Google Scholar]
  17. Herlitze S., Raditsch M., Ruppersberg J. P., Jahn W., Monyer H., Schoepfer R., Witzemann V. Argiotoxin detects molecular differences in AMPA receptor channels. Neuron. 1993 Jun;10(6):1131–1140. doi: 10.1016/0896-6273(93)90061-u. [DOI] [PubMed] [Google Scholar]
  18. Igarashi K., Shirahata A., Pahk A. J., Kashiwagi K., Williams K. Benzyl-polyamines: novel, potent N-methyl-D-aspartate receptor antagonists. J Pharmacol Exp Ther. 1997 Nov;283(2):533–540. [PubMed] [Google Scholar]
  19. Isa T., Iino M., Ozawa S. Spermine blocks synaptic transmission mediated by Ca(2+)-permeable AMPA receptors. Neuroreport. 1996 Feb 29;7(3):689–692. doi: 10.1097/00001756-199602290-00002. [DOI] [PubMed] [Google Scholar]
  20. Jones M. G., Anis N. A., Lodge D. Philanthotoxin blocks quisqualate-, AMPA- and kainate-, but not NMDA-, induced excitation of rat brainstem neurones in vivo. Br J Pharmacol. 1990 Dec;101(4):968–970. doi: 10.1111/j.1476-5381.1990.tb14189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kashiwagi K., Pahk A. J., Masuko T., Igarashi K., Williams K. Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol Pharmacol. 1997 Oct;52(4):701–713. doi: 10.1124/mol.52.4.701. [DOI] [PubMed] [Google Scholar]
  22. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  23. Kuner T., Beck C., Sakmann B., Seeburg P. H. Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter. J Neurosci. 2001 Jun 15;21(12):4162–4172. doi: 10.1523/JNEUROSCI.21-12-04162.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li Z., Scheraga H. A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6611–6615. doi: 10.1073/pnas.84.19.6611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Magazanik L. G., Buldakova S. L., Samoilova M. V., Gmiro V. E., Mellor I. R., Usherwood P. N. Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives. J Physiol. 1997 Dec 15;505(Pt 3):655–663. doi: 10.1111/j.1469-7793.1997.655ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mori H., Masaki H., Yamakura T., Mishina M. Identification by mutagenesis of a Mg(2+)-block site of the NMDA receptor channel. Nature. 1992 Aug 20;358(6388):673–675. doi: 10.1038/358673a0. [DOI] [PubMed] [Google Scholar]
  27. Panchenko V. A., Glasser C. R., Mayer M. L. Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis. J Gen Physiol. 2001 Apr;117(4):345–360. doi: 10.1085/jgp.117.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Panchenko V. A., Glasser C. R., Partin K. M., Mayer M. L. Amino acid substitutions in the pore of rat glutamate receptors at sites influencing block by polyamines. J Physiol. 1999 Oct 15;520(Pt 2):337–357. doi: 10.1111/j.1469-7793.1999.t01-1-00337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Parsons C. G., Danysz W., Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data. Neuropharmacology. 1999 Jun;38(6):735–767. doi: 10.1016/s0028-3908(99)00019-2. [DOI] [PubMed] [Google Scholar]
  30. Parsons C. G., Panchenko V. A., Pinchenko V. O., Tsyndrenko A. Y., Krishtal O. A. Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine. Eur J Neurosci. 1996 Mar;8(3):446–454. doi: 10.1111/j.1460-9568.1996.tb01228.x. [DOI] [PubMed] [Google Scholar]
  31. Pellegrini-Giampietro D. E., Gorter J. A., Bennett M. V., Zukin R. S. The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci. 1997 Oct;20(10):464–470. doi: 10.1016/s0166-2236(97)01100-4. [DOI] [PubMed] [Google Scholar]
  32. Priestley T., Woodruff G. N., Kemp J. A. Antagonism of responses to excitatory amino acids on rat cortical neurones by the spider toxin, argiotoxin636. Br J Pharmacol. 1989 Aug;97(4):1315–1323. doi: 10.1111/j.1476-5381.1989.tb12594.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  34. Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tikhonov D. B., Magazanik L. G., Mellor I. R., Usherwood P. N. Possible influence of intramolecular hydrogen bonds on the three-dimensional structure of polyamine amides and their interaction with ionotropic glutamate receptors. Receptors Channels. 2000;7(3):227–236. [PubMed] [Google Scholar]
  36. Tikhonov D. B., Samoilova M. V., Buldakova S. L., Gmiro V. E., Magazanik L. G. Voltage-dependent block of native AMPA receptor channels by dicationic compounds. Br J Pharmacol. 2000 Jan;129(2):265–274. doi: 10.1038/sj.bjp.0703043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tikhonov D. B., Zhorov B. S., Magazanik L. G. Intersegment hydrogen bonds as possible structural determinants of the N/Q/R site in glutamate receptors. Biophys J. 1999 Oct;77(4):1914–1926. doi: 10.1016/S0006-3495(99)77033-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Villarroel A., Burnashev N., Sakmann B. Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys J. 1995 Mar;68(3):866–875. doi: 10.1016/S0006-3495(95)80263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Washburn M. S., Dingledine R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J Pharmacol Exp Ther. 1996 Aug;278(2):669–678. [PubMed] [Google Scholar]
  40. Williams K., Pahk A. J., Kashiwagi K., Masuko T., Nguyen N. D., Igarashi K. The selectivity filter of the N-methyl-D-aspartate receptor: a tryptophan residue controls block and permeation of Mg2+. Mol Pharmacol. 1998 May;53(5):933–941. [PubMed] [Google Scholar]
  41. Wollmuth L. P., Kuner T., Sakmann B. Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J Physiol. 1998 Jan 1;506(Pt 1):13–32. doi: 10.1111/j.1469-7793.1998.013bx.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wood M. W., VanDongen H. M., VanDongen A. M. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4882–4886. doi: 10.1073/pnas.92.11.4882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zaulyanov L. L., Green P. S., Simpkins J. W. Glutamate receptor requirement for neuronal death from anoxia-reoxygenation: an in Vitro model for assessment of the neuroprotective effects of estrogens. Cell Mol Neurobiol. 1999 Dec;19(6):705–718. doi: 10.1023/A:1006948921855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhorov B. S., Ananthanarayanan V. S. Structural model of a synthetic Ca2+ channel with bound Ca2+ ions and dihydropyridine ligand. Biophys J. 1996 Jan;70(1):22–37. doi: 10.1016/S0006-3495(96)79561-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhou M., Morais-Cabral J. H., Mann S., MacKinnon R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature. 2001 Jun 7;411(6838):657–661. doi: 10.1038/35079500. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES