Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):1920–1929. doi: 10.1016/S0006-3495(02)75541-0

Subunit-selective contribution to channel gating of the M4 domain of the nicotinic receptor.

Cecilia Bouzat 1, Fernanda Gumilar 1, María del Carmen Esandi 1, Steven M Sine 1
PMCID: PMC1301988  PMID: 11916850

Abstract

The muscle nicotinic receptor (AChR) is a pentamer of four different subunits, each of which contains four transmembrane domains (M1-M4). We recently showed that channel opening and closing rates of the AChR depend on a hydrogen bond involving a threonine at position 14' of the M4 domain in the alpha-subunit. To determine whether residues in equivalent positions in non-alpha-subunits contribute to channel gating, we mutated deltaT14', betaT14', and epsilonS14' and evaluated changes in the kinetics of acetylcholine-activated currents. The mutation epsilonS14'A profoundly slows the rate of channel closing, an effect opposite to that produced by mutation of alphaT14'. Unlike mutations of alphaT14', epsilonS14'A does not affect the rate of channel opening. Mutations in deltaT14' and betaT14' do not affect channel opening or closing kinetics, showing that conserved residues are not functionally equivalent in all subunits. Whereas alphaT14'A and epsilonS14'A subunits contribute additively to the closing rate, they contribute nonadditively to the opening rate. Substitution of residues preserving the hydrogen bonding ability at position 14' produce nearly normal gating kinetics. Thus, we identify subunit-specific contributions to channel gating of equivalent residues in M4 and elucidate the underlying mechanistic and structural bases.

Full Text

The Full Text of this article is available as a PDF (227.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akk G., Auerbach A. Inorganic, monovalent cations compete with agonists for the transmitter binding site of nicotinic acetylcholine receptors. Biophys J. 1996 Jun;70(6):2652–2658. doi: 10.1016/S0006-3495(96)79834-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blanton M. P., Cohen J. B. Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry. 1994 Mar 15;33(10):2859–2872. doi: 10.1021/bi00176a016. [DOI] [PubMed] [Google Scholar]
  3. Blanton M. P., Cohen J. B. Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor. Biochemistry. 1992 Apr 21;31(15):3738–3750. doi: 10.1021/bi00130a003. [DOI] [PubMed] [Google Scholar]
  4. Bouzat C., Barrantes F., Sine S. Nicotinic receptor fourth transmembrane domain: hydrogen bonding by conserved threonine contributes to channel gating kinetics. J Gen Physiol. 2000 May;115(5):663–672. doi: 10.1085/jgp.115.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bouzat C., Bren N., Sine S. M. Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors. Neuron. 1994 Dec;13(6):1395–1402. doi: 10.1016/0896-6273(94)90424-3. [DOI] [PubMed] [Google Scholar]
  6. Bouzat C., Roccamo A. M., Garbus I., Barrantes F. J. Mutations at lipid-exposed residues of the acetylcholine receptor affect its gating kinetics. Mol Pharmacol. 1998 Jul;54(1):146–153. doi: 10.1124/mol.54.1.146. [DOI] [PubMed] [Google Scholar]
  7. Engel A. G., Ohno K., Bouzat C., Sine S. M., Griggs R. C. End-plate acetylcholine receptor deficiency due to nonsense mutations in the epsilon subunit. Ann Neurol. 1996 Nov;40(5):810–817. doi: 10.1002/ana.410400521. [DOI] [PubMed] [Google Scholar]
  8. Fersht A. R., Shi J. P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M., Winter G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature. 1985 Mar 21;314(6008):235–238. doi: 10.1038/314235a0. [DOI] [PubMed] [Google Scholar]
  9. Grosman C., Auerbach A. Asymmetric and independent contribution of the second transmembrane segment 12' residues to diliganded gating of acetylcholine receptor channels: a single-channel study with choline as the agonist. J Gen Physiol. 2000 May;115(5):637–651. doi: 10.1085/jgp.115.5.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Hidalgo P., MacKinnon R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science. 1995 Apr 14;268(5208):307–310. doi: 10.1126/science.7716527. [DOI] [PubMed] [Google Scholar]
  12. Horovitz A., Fersht A. R. Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins. J Mol Biol. 1990 Aug 5;214(3):613–617. doi: 10.1016/0022-2836(90)90275-Q. [DOI] [PubMed] [Google Scholar]
  13. Lee Y. H., Li L., Lasalde J., Rojas L., McNamee M., Ortiz-Miranda S. I., Pappone P. Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Biophys J. 1994 Mar;66(3 Pt 1):646–653. doi: 10.1016/s0006-3495(94)80838-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ortiz-Miranda S. I., Lasalde J. A., Pappone P. A., McNamee M. G. Mutations in the M4 domain of the Torpedo californica nicotinic acetylcholine receptor alter channel opening and closing. J Membr Biol. 1997 Jul 1;158(1):17–30. doi: 10.1007/s002329900240. [DOI] [PubMed] [Google Scholar]
  15. Qin F., Auerbach A., Sachs F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J. 1996 Jan;70(1):264–280. doi: 10.1016/S0006-3495(96)79568-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sakmann B., Patlak J., Neher E. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature. 1980 Jul 3;286(5768):71–73. doi: 10.1038/286071a0. [DOI] [PubMed] [Google Scholar]
  17. Salamone F. N., Zhou M., Auerbach A. A re-examination of adult mouse nicotinic acetylcholine receptor channel activation kinetics. J Physiol. 1999 Apr 15;516(Pt 2):315–330. doi: 10.1111/j.1469-7793.1999.0315v.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sine S. M. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9436–9440. doi: 10.1073/pnas.90.20.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sine S. M., Ohno K., Bouzat C., Auerbach A., Milone M., Pruitt J. N., Engel A. G. Mutation of the acetylcholine receptor alpha subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron. 1995 Jul;15(1):229–239. doi: 10.1016/0896-6273(95)90080-2. [DOI] [PubMed] [Google Scholar]
  21. Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995 Jan 5;373(6509):37–43. doi: 10.1038/373037a0. [DOI] [PubMed] [Google Scholar]
  22. Wang H. L., Auerbach A., Bren N., Ohno K., Engel A. G., Sine S. M. Mutation in the M1 domain of the acetylcholine receptor alpha subunit decreases the rate of agonist dissociation. J Gen Physiol. 1997 Jun;109(6):757–766. doi: 10.1085/jgp.109.6.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang H. L., Milone M., Ohno K., Shen X. M., Tsujino A., Batocchi A. P., Tonali P., Brengman J., Engel A. G., Sine S. M. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci. 1999 Mar;2(3):226–233. doi: 10.1038/6326. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES