Abstract
Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise be white and that the underlying state transitions occur at discrete times. To address these issues, we present an "H-noise" algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contaminated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.
Full Text
The Full Text of this article is available as a PDF (180.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ball F. G., Sansom M. S. Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings. Proc R Soc Lond B Biol Sci. 1989 May 22;236(1285):385–416. doi: 10.1098/rspb.1989.0029. [DOI] [PubMed] [Google Scholar]
- Becker J. D., Honerkamp J., Hirsch J., Fröbe U., Schlatter E., Greger R. Analysing ion channels with hidden Markov models. Pflugers Arch. 1994 Feb;426(3-4):328–332. doi: 10.1007/BF00374789. [DOI] [PubMed] [Google Scholar]
- Chung S. H., Moore J. B., Xia L. G., Premkumar L. S., Gage P. W. Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models. Philos Trans R Soc Lond B Biol Sci. 1990 Sep 29;329(1254):265–285. doi: 10.1098/rstb.1990.0170. [DOI] [PubMed] [Google Scholar]
- Farokhi A., Keunecke M., Hansen U. P. The anomalous mole fraction effect in Chara: gating at the edge of temporal resolution. Biophys J. 2000 Dec;79(6):3072–3082. doi: 10.1016/S0006-3495(00)76542-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fredkin D. R., Rice J. A. Bayesian restoration of single-channel patch clamp recordings. Biometrics. 1992 Jun;48(2):427–448. [PubMed] [Google Scholar]
- Fredkin D. R., Rice J. A. Maximum likelihood estimation and identification directly from single-channel recordings. Proc Biol Sci. 1992 Aug 22;249(1325):125–132. doi: 10.1098/rspb.1992.0094. [DOI] [PubMed] [Google Scholar]
- Horn R., Lange K. Estimating kinetic constants from single channel data. Biophys J. 1983 Aug;43(2):207–223. doi: 10.1016/S0006-3495(83)84341-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levis R. A., Rae J. L. The use of quartz patch pipettes for low noise single channel recording. Biophys J. 1993 Oct;65(4):1666–1677. doi: 10.1016/S0006-3495(93)81224-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magleby K. L., Weiss D. S. Estimating kinetic parameters for single channels with simulation. A general method that resolves the missed event problem and accounts for noise. Biophys J. 1990 Dec;58(6):1411–1426. doi: 10.1016/S0006-3495(90)82487-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalek S., Lerche H., Wagner M., Mitrović N., Schiebe M., Lehmann-Horn F., Timmer J. On identification of Na(+) channel gating schemes using moving-average filtered hidden Markov models. Eur Biophys J. 1999;28(7):605–609. doi: 10.1007/s002490050243. [DOI] [PubMed] [Google Scholar]
- Milburn T., Saint D. A., Chung S. H. The temperature dependence of conductance of the sodium channel: implications for mechanisms of ion permeation. Receptors Channels. 1995;3(3):201–211. [PubMed] [Google Scholar]
- Qin F., Auerbach A., Sachs F. A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys J. 2000 Oct;79(4):1915–1927. doi: 10.1016/S0006-3495(00)76441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qin F., Auerbach A., Sachs F. Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys J. 2000 Oct;79(4):1928–1944. doi: 10.1016/S0006-3495(00)76442-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qin F., Auerbach A., Sachs F. Maximum likelihood estimation of aggregated Markov processes. Proc Biol Sci. 1997 Mar 22;264(1380):375–383. doi: 10.1098/rspb.1997.0054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunderman E. R., Zagotta W. N. Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels. J Gen Physiol. 1999 May;113(5):601–620. doi: 10.1085/jgp.113.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunderman E. R., Zagotta W. N. Sequence of events underlying the allosteric transition of rod cyclic nucleotide-gated channels. J Gen Physiol. 1999 May;113(5):621–640. doi: 10.1085/jgp.113.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang H. L., Ohno K., Milone M., Brengman J. M., Evoli A., Batocchi A. P., Middleton L. T., Christodoulou K., Engel A. G., Sine S. M. Fundamental gating mechanism of nicotinic receptor channel revealed by mutation causing a congenital myasthenic syndrome. J Gen Physiol. 2000 Sep;116(3):449–462. doi: 10.1085/jgp.116.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng J., Vankataramanan L., Sigworth F. J. Hidden Markov model analysis of intermediate gating steps associated with the pore gate of shaker potassium channels. J Gen Physiol. 2001 Nov;118(5):547–564. doi: 10.1085/jgp.118.5.547. [DOI] [PMC free article] [PubMed] [Google Scholar]