Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):1943–1952. doi: 10.1016/S0006-3495(02)75543-4

Stoichiometry of the Cardiac Na+/Ca2+ exchanger NCX1.1 measured in transfected HEK cells.

Hui Dong 1, Jeremy Dunn 1, Jonathan Lytton 1
PMCID: PMC1301990  PMID: 11916852

Abstract

The stoichiometry with which the Na+/Ca2+ exchanger, NCX1, binds and transports Na+ and Ca2+ has dramatic consequences for ionic homeostasis and cellular function of heart mycocytes and brain neurons, where the exchanger is highly expressed. Previous studies have examined this question using native NCX1 in its endogenous environment. We describe here whole-cell voltage clamp studies using recombinant rat heart NCX1.1 expressed heterologously in HEK-293 cells. This system provides the advantages of a high level of NCX1 protein expression, very low background ion transport levels, and excellent control over clamped voltage and ionic composition. Using ionic conditions that allowed bi-directional currents, voltage ramps were employed to determine the reversal potential for NCX1.1-mediated currents. Analysis of the relation between reversal potential and external [Na+] or [Ca2+], under a variety of intracellular conditions, yielded coupling ratios for Na+ of 1.9-2.3 ions per net charge and for Ca2+ of 0.45 +/- 0.03 ions per net charge. These data are consistent with a stoichiometry for the NCX1.1 protein of 4 Na+ to 1 Ca2+ to 2 charges moved per transport cycle.

Full Text

The Full Text of this article is available as a PDF (267.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelsen P. H., Bridge J. H. Electrochemical ion gradients and the Na/Ca exchange stoichiometry. Measurements of these gradients are thermodynamically consistent with a stoichiometric coefficient greater than or equal to 3. J Gen Physiol. 1985 Mar;85(3):471–475. doi: 10.1085/jgp.85.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blaustein M. P., Lederer W. J. Sodium/calcium exchange: its physiological implications. Physiol Rev. 1999 Jul;79(3):763–854. doi: 10.1152/physrev.1999.79.3.763. [DOI] [PubMed] [Google Scholar]
  3. Blaustein M. P., Russell J. M. Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons. J Membr Biol. 1975 Jul 24;22(3-4):285–312. doi: 10.1007/BF01868176. [DOI] [PubMed] [Google Scholar]
  4. Blostein R., Polvani C. Altered stoichiometry of the Na,K-ATPase. Acta Physiol Scand Suppl. 1992;607:105–110. [PubMed] [Google Scholar]
  5. Bridge J. H., Bassingthwaighte J. B. Uphill sodium transport driven by an inward calcium gradient in heart muscle. Science. 1983 Jan 14;219(4581):178–180. doi: 10.1126/science.6849128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bridge J. H., Smolley J. R., Spitzer K. W. The relationship between charge movements associated with ICa and INa-Ca in cardiac myocytes. Science. 1990 Apr 20;248(4953):376–378. doi: 10.1126/science.2158147. [DOI] [PubMed] [Google Scholar]
  7. Choi H. S., Eisner D. A. The role of sarcolemmal Ca2+-ATPase in the regulation of resting calcium concentration in rat ventricular myocytes. J Physiol. 1999 Feb 15;515(Pt 1):109–118. doi: 10.1111/j.1469-7793.1999.109ad.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crespo L. M., Grantham C. J., Cannell M. B. Kinetics, stoichiometry and role of the Na-Ca exchange mechanism in isolated cardiac myocytes. Nature. 1990 Jun 14;345(6276):618–621. doi: 10.1038/345618a0. [DOI] [PubMed] [Google Scholar]
  9. Dong H., Light P. E., French R. J., Lytton J. Electrophysiological characterization and ionic stoichiometry of the rat brain K(+)-dependent NA(+)/CA(2+) exchanger, NCKX2. J Biol Chem. 2001 May 7;276(28):25919–25928. doi: 10.1074/jbc.M103401200. [DOI] [PubMed] [Google Scholar]
  10. Egger M., Niggli E. Paradoxical block of the Na+-Ca2+ exchanger by extracellular protons in guinea-pig ventricular myocytes. J Physiol. 2000 Mar 1;523(Pt 2):353–366. doi: 10.1111/j.1469-7793.2000.t01-1-00353.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ehara T., Matsuoka S., Noma A. Measurement of reversal potential of Na+-Ca2+ exchange current in single guinea-pig ventricular cells. J Physiol. 1989 Mar;410:227–249. doi: 10.1113/jphysiol.1989.sp017530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  13. Fujioka Y., Komeda M., Matsuoka S. Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol. 2000 Mar 1;523(Pt 2):339–351. doi: 10.1111/j.1469-7793.2000.t01-2-00339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hilgemann D. W., Collins A., Matsuoka S. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J Gen Physiol. 1992 Dec;100(6):933–961. doi: 10.1085/jgp.100.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ledvora R. F., Hegyvary C. Dependence of Na+-Ca2+ exchange and Ca2+-Ca2+ exchange on monovalent cations. Biochim Biophys Acta. 1983 Mar 23;729(1):123–136. doi: 10.1016/0005-2736(83)90463-7. [DOI] [PubMed] [Google Scholar]
  17. Lee S. L., Yu A. S., Lytton J. Tissue-specific expression of Na(+)-Ca2+ exchanger isoforms. J Biol Chem. 1994 May 27;269(21):14849–14852. [PubMed] [Google Scholar]
  18. Matsuoka S., Hilgemann D. W. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol. 1992 Dec;100(6):963–1001. doi: 10.1085/jgp.100.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mullins L. J. A mechanism for Na/Ca transport. J Gen Physiol. 1977 Dec;70(6):681–695. doi: 10.1085/jgp.70.6.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nicoll D. A., Longoni S., Philipson K. D. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990 Oct 26;250(4980):562–565. doi: 10.1126/science.1700476. [DOI] [PubMed] [Google Scholar]
  21. Philipson K. D., Nicoll D. A. Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol. 2000;62:111–133. doi: 10.1146/annurev.physiol.62.1.111. [DOI] [PubMed] [Google Scholar]
  22. Pitts B. J. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. Coupling to the sodium pump. J Biol Chem. 1979 Jul 25;254(14):6232–6235. [PubMed] [Google Scholar]
  23. Rasgado-Flores H., Santiago E. M., Blaustein M. P. Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells. J Gen Physiol. 1989 Jun;93(6):1219–1241. doi: 10.1085/jgp.93.6.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reeves J. P., Hale C. C. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem. 1984 Jun 25;259(12):7733–7739. [PubMed] [Google Scholar]
  25. Sheng J. Z., Prinsen C. F., Clark R. B., Giles W. R., Schnetkamp P. P. Na(+)-Ca(2+)-K(+) currents measured in insect cells transfected with the retinal cone or rod Na(+)-Ca(2+)-K(+) exchanger cDNA. Biophys J. 2000 Oct;79(4):1945–1953. doi: 10.1016/S0006-3495(00)76443-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sheu S. S., Fozzard H. A. Na/Ca exchange in the intact cardiac cell. J Gen Physiol. 1985 Mar;85(3):476–478. [PMC free article] [PubMed] [Google Scholar]
  27. Szerencsei R. T., Prinsen C. F., Schnetkamp P. P. Stoichiometry of the retinal cone Na/Ca-K exchanger heterologously expressed in insect cells: comparison with the bovine heart Na/Ca exchanger. Biochemistry. 2001 May 22;40(20):6009–6015. doi: 10.1021/bi0102353. [DOI] [PubMed] [Google Scholar]
  28. Wakabayashi S., Goshima K. Kinetic studies on sodium-dependent calcium uptake by myocardial cells and neuroblastoma cells in culture. Biochim Biophys Acta. 1981 Mar 20;642(1):158–172. doi: 10.1016/0005-2736(81)90146-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES