Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):1953–1963. doi: 10.1016/S0006-3495(02)75544-6

Block of the ryanodine receptor channel by neomycin is relieved at high holding potentials.

Fiona Mead 1, Alan J Williams 1
PMCID: PMC1301991  PMID: 11916853

Abstract

In this study we have investigated the actions of the aminoglycoside antibiotic neomycin on K+ conductance in the purified sheep cardiac sarcoplasmic reticulum (SR) calcium-release channel (RyR). Neomycin induces a concentration- and voltage-dependent partial block from both the cytosolic and luminal faces of the channel. Blocking parameters for cytosolic and luminal block are markedly different. Neomycin has a greater affinity for the luminal site of interaction than the cytosolic site: zero-voltage dissociation constants (Kb(0)) are respectively 210.20 +/- 22.80 and 589.70 +/- 184.00 nM for luminal and cytosolic block. However, neomycin also exhibits voltage-dependent relief of block at holding potentials >+60 mV when applied to the cytosolic face and a similar phenomenon may occur with luminal neomycin at high negative holding potentials. These observations indicate that, under appropriate conditions, neomycin is capable of passing through the RyR channel.

Full Text

The Full Text of this article is available as a PDF (231.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahern G. P., Junankar P. R., Dulhunty A. F. Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12. Biophys J. 1997 Jan;72(1):146–162. doi: 10.1016/S0006-3495(97)78654-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brillantes A. B., Ondrias K., Scott A., Kobrinsky E., Ondriasová E., Moschella M. C., Jayaraman T., Landers M., Ehrlich B. E., Marks A. R. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell. 1994 May 20;77(4):513–523. doi: 10.1016/0092-8674(94)90214-3. [DOI] [PubMed] [Google Scholar]
  3. Bähring R., Bowie D., Benveniste M., Mayer M. L. Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines. J Physiol. 1997 Aug 1;502(Pt 3):575–589. doi: 10.1111/j.1469-7793.1997.575bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Calviello G., Chiesi M. Rapid kinetic analysis of the calcium-release channels of skeletal muscle sarcoplasmic reticulum: the effect of inhibitors. Biochemistry. 1989 Feb 7;28(3):1301–1306. doi: 10.1021/bi00429a053. [DOI] [PubMed] [Google Scholar]
  5. Duarte C. B., Tome A. R., Forsberg E., Carvalho C. A., Carvalho A. P., Santos R. M., Rosario L. M. Neomycin blocks dihydropyridine-insensitive Ca2+ influx in bovine adrenal chromaffin cells. Eur J Pharmacol. 1993 Feb 15;244(3):259–267. doi: 10.1016/0922-4106(93)90151-x. [DOI] [PubMed] [Google Scholar]
  6. French R. J., Shoukimas J. J. An ion's view of the potassium channel. The structure of the permeation pathway as sensed by a variety of blocking ions. J Gen Physiol. 1985 May;85(5):669–698. doi: 10.1085/jgp.85.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guo D., Lu Z. Mechanism of IRK1 channel block by intracellular polyamines. J Gen Physiol. 2000 Jun;115(6):799–814. doi: 10.1085/jgp.115.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guo D., Lu Z. Mechanism of cGMP-gated channel block by intracellular polyamines. J Gen Physiol. 2000 Jun;115(6):783–798. doi: 10.1085/jgp.115.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haghighi A. P., Cooper E. Neuronal nicotinic acetylcholine receptors are blocked by intracellular spermine in a voltage-dependent manner. J Neurosci. 1998 Jun 1;18(11):4050–4062. doi: 10.1523/JNEUROSCI.18-11-04050.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haws C. M., Winegar B. D., Lansman J. B. Block of single L-type Ca2+ channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol. 1996 Mar;107(3):421–432. doi: 10.1085/jgp.107.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang C. J., Moczydlowski E. Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophys J. 2001 Mar;80(3):1262–1279. doi: 10.1016/S0006-3495(01)76102-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaftan E., Marks A. R., Ehrlich B. E. Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle. Circ Res. 1996 Jun;78(6):990–997. doi: 10.1161/01.res.78.6.990. [DOI] [PubMed] [Google Scholar]
  13. Lindsay A. R., Manning S. D., Williams A. J. Monovalent cation conductance in the ryanodine receptor-channel of sheep cardiac muscle sarcoplasmic reticulum. J Physiol. 1991 Aug;439:463–480. doi: 10.1113/jphysiol.1991.sp018676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindsay A. R., Tinker A., Williams A. J. How does ryanodine modify ion handling in the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel? J Gen Physiol. 1994 Sep;104(3):425–447. doi: 10.1085/jgp.104.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindsay A. R., Williams A. J. Functional characterisation of the ryanodine receptor purified from sheep cardiac muscle sarcoplasmic reticulum. Biochim Biophys Acta. 1991 Apr 26;1064(1):89–102. doi: 10.1016/0005-2736(91)90415-5. [DOI] [PubMed] [Google Scholar]
  16. Liu Q. Y., Lai F. A., Rousseau E., Jones R. V., Meissner G. Multiple conductance states of the purified calcium release channel complex from skeletal sarcoplasmic reticulum. Biophys J. 1989 Mar;55(3):415–424. doi: 10.1016/S0006-3495(89)82835-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lopatin A. N., Nichols C. G. Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol. 2001 Apr;33(4):625–638. doi: 10.1006/jmcc.2001.1344. [DOI] [PubMed] [Google Scholar]
  18. McGarry S. J., Williams A. J. Activation of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by analogues of sulmazole. Br J Pharmacol. 1994 Apr;111(4):1212–1220. doi: 10.1111/j.1476-5381.1994.tb14874.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mead F. C., Sullivan D., Williams A. J. Evidence for negative charge in the conduction pathway of the cardiac ryanodine receptor channel provided by the interaction of K+ channel N-type inactivation peptides. J Membr Biol. 1998 Jun 1;163(3):225–234. doi: 10.1007/s002329900386. [DOI] [PubMed] [Google Scholar]
  20. Mead Fiona, Williams Alan J. Block of the ryanodine receptor channel by neomycin is relieved at high holding potentials. Biophys J. 2002 Apr;82(4):1953–1963. doi: 10.1016/S0006-3495(02)75544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller C. Open-state substructure of single chloride channels from Torpedo electroplax. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):401–411. doi: 10.1098/rstb.1982.0140. [DOI] [PubMed] [Google Scholar]
  22. Nomura K., Naruse K., Watanabe K., Sokabe M. Aminoglycoside blockade of Ca2(+)-activated K+ channel from rat brain synaptosomal membranes incorporated into planar bilayers. J Membr Biol. 1990 May;115(3):241–251. doi: 10.1007/BF01868639. [DOI] [PubMed] [Google Scholar]
  23. Oliver D., Baukrowitz T., Fakler B. Polyamines as gating molecules of inward-rectifier K+ channels. Eur J Biochem. 2000 Oct;267(19):5824–5829. doi: 10.1046/j.1432-1327.2000.01669.x. [DOI] [PubMed] [Google Scholar]
  24. Palade P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+-induced Ca2+ release by organic polyamines. J Biol Chem. 1987 May 5;262(13):6149–6154. [PubMed] [Google Scholar]
  25. Prod'hom B., Pietrobon D., Hess P. Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion. J Gen Physiol. 1989 Jul;94(1):23–42. doi: 10.1085/jgp.94.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rousseau E., Smith J. S., Meissner G. Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol. 1987 Sep;253(3 Pt 1):C364–C368. doi: 10.1152/ajpcell.1987.253.3.C364. [DOI] [PubMed] [Google Scholar]
  27. Schild L., Ravindran A., Moczydlowski E. Zn2(+)-induced subconductance events in cardiac Na+ channels prolonged by batrachotoxin. Current-voltage behavior and single-channel kinetics. J Gen Physiol. 1991 Jan;97(1):117–142. doi: 10.1085/jgp.97.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sitsapesan R., Williams A. J. Gating of the native and purified cardiac SR Ca(2+)-release channel with monovalent cations as permeant species. Biophys J. 1994 Oct;67(4):1484–1494. doi: 10.1016/S0006-3495(94)80622-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sitsapesan R., Williams A. J. Mechanisms of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum. J Physiol. 1990 Apr;423:425–439. doi: 10.1113/jphysiol.1990.sp018031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sitsapesan R., Williams A. J. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by luminal Ca2+. J Membr Biol. 1994 Feb;137(3):215–226. doi: 10.1007/BF00232590. [DOI] [PubMed] [Google Scholar]
  31. Suarez-Kurtz G., Reuben J. P. Effects of neomycin on calcium channel currents in clonal GH3 pituitary cells. Pflugers Arch. 1987 Nov;410(4-5):517–523. doi: 10.1007/BF00586535. [DOI] [PubMed] [Google Scholar]
  32. Tanna B., Welch W., Ruest L., Sutko J. L., Williams A. J. Interactions of a reversible ryanoid (21-amino-9alpha-hydroxy-ryanodine) with single sheep cardiac ryanodine receptor channels. J Gen Physiol. 1998 Jul;112(1):55–69. doi: 10.1085/jgp.112.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tinker A., Lindsay A. R., Williams A. J. A model for ionic conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum. J Gen Physiol. 1992 Sep;100(3):495–517. doi: 10.1085/jgp.100.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tinker A., Lindsay A. R., Williams A. J. Block of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by tetra-alkyl ammonium cations. J Membr Biol. 1992 Apr;127(2):149–159. doi: 10.1007/BF00233287. [DOI] [PubMed] [Google Scholar]
  35. Tinker A., Lindsay A. R., Williams A. J. Large tetraalkyl ammonium cations produce a reduced conductance state in the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel. Biophys J. 1992 May;61(5):1122–1132. doi: 10.1016/S0006-3495(92)81922-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tinker A., Sutko J. L., Ruest L., Deslongchamps P., Welch W., Airey J. A., Gerzon K., Bidasee K. R., Besch H. R., Jr, Williams A. J. Electrophysiological effects of ryanodine derivatives on the sheep cardiac sarcoplasmic reticulum calcium-release channel. Biophys J. 1996 May;70(5):2110–2119. doi: 10.1016/S0006-3495(96)79777-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tinker A., Williams A. J. Charged local anesthetics block ionic conduction in the sheep cardiac sarcoplasmic reticulum calcium release channel. Biophys J. 1993 Aug;65(2):852–864. doi: 10.1016/S0006-3495(93)81104-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tinker A., Williams A. J. Measuring the length of the pore of the sheep cardiac sarcoplasmic reticulum calcium-release channel using related trimethylammonium ions as molecular calipers. Biophys J. 1995 Jan;68(1):111–120. doi: 10.1016/S0006-3495(95)80165-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tinker A., Williams A. J. Probing the structure of the conduction pathway of the sheep cardiac sarcoplasmic reticulum calcium-release channel with permeant and impermeant organic cations. J Gen Physiol. 1993 Dec;102(6):1107–1129. doi: 10.1085/jgp.102.6.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tomlins B., Williams A. J. Solubilisation and reconstitution of the rabbit skeletal muscle sarcoplasmic reticulum K+ channel into liposomes suitable for patch clamp studies. Pflugers Arch. 1986 Sep;407(3):341–347. doi: 10.1007/BF00585312. [DOI] [PubMed] [Google Scholar]
  41. Tu Q., Velez P., Cortes-Gutierrez M., Fill M. Surface charge potentiates conduction through the cardiac ryanodine receptor channel. J Gen Physiol. 1994 May;103(5):853–867. doi: 10.1085/jgp.103.5.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wagner J. A., Snowman A. M., Olivera B. M., Snyder S. H. Aminoglycoside effects on voltage-sensitive calcium channels and neurotoxicity. N Engl J Med. 1987 Dec 24;317(26):1669–1669. doi: 10.1056/NEJM198712243172618. [DOI] [PubMed] [Google Scholar]
  43. Williams A. J., West D. J., Sitsapesan R. Light at the end of the Ca(2+)-release channel tunnel: structures and mechanisms involved in ion translocation in ryanodine receptor channels. Q Rev Biophys. 2001 Feb;34(1):61–104. doi: 10.1017/s0033583501003675. [DOI] [PubMed] [Google Scholar]
  44. Winegar B. D., Haws C. M., Lansman J. B. Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol. 1996 Mar;107(3):433–443. doi: 10.1085/jgp.107.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Xiao R. P., Valdivia H. H., Bogdanov K., Valdivia C., Lakatta E. G., Cheng H. The immunophilin FK506-binding protein modulates Ca2+ release channel closure in rat heart. J Physiol. 1997 Apr 15;500(Pt 2):343–354. doi: 10.1113/jphysiol.1997.sp022025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yano M., el-Hayek R., Antoniu B., Ikemoto N. Neomycin: a novel potent blocker of communication between T-tubule and sarcoplasmic reticulum. FEBS Lett. 1994 Sep 12;351(3):349–352. doi: 10.1016/0014-5793(94)00869-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES