Abstract
Highly reproducible ion channels of the lipopeptide antibiotic syringomycin E demonstrate unprecedented involvement of the host bilayer lipids. We find that in addition to a pronounced influence of lipid species on the open-channel ionic conductance, the membrane lipids play a crucial role in channel gating. The effective gating charge, which characterizes sensitivity of the conformational equilibrium of the syringomycin E channels to the transmembrane voltage, is modified by the lipid charge and lipid dipolar moment. We show that the type of host lipid determines not only the absolute value but also the sign of the gating charge. With negatively charged bilayers, the gating charge sign inverts with increased salt concentration or decreased pH. We also demonstrate that the replacement of lamellar lipid by nonlamellar with the negative spontaneous curvature inhibits channel formation. These observations suggest that the asymmetric channel directly incorporates lipids. The charges and dipoles resulting from the structural inclusion of lipids are important determinants of the overall energetics that underlies channel gating. We conclude that the syringomycin E channel may serve as a biophysical model to link studies of ion channels with those of lipidic pores in membrane fusion.
Full Text
The Full Text of this article is available as a PDF (207.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agner G., Kaulin Y. A., Schagina L. V., Takemoto J. Y., Blasko K. Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):79–86. doi: 10.1016/s0005-2736(00)00173-5. [DOI] [PubMed] [Google Scholar]
- Aguilella V. M., Bezrukov S. M. Alamethicin channel conductance modified by lipid charge. Eur Biophys J. 2001 Aug;30(4):233–241. doi: 10.1007/s002490100145. [DOI] [PubMed] [Google Scholar]
- Almers W. Fusion needs more than SNAREs. Nature. 2001 Feb 1;409(6820):567–568. doi: 10.1038/35054637. [DOI] [PubMed] [Google Scholar]
- Apell H. J., Bamberg E., Läuger P. Effects of surface charge on the conductance of the gramicidin channel. Biochim Biophys Acta. 1979 Apr 19;552(3):369–378. doi: 10.1016/0005-2736(79)90181-0. [DOI] [PubMed] [Google Scholar]
- Bender C. L., Alarcón-Chaidez F., Gross D. C. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev. 1999 Jun;63(2):266–292. doi: 10.1128/mmbr.63.2.266-292.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezrukov S. M., Rand R. P., Vodyanoy I., Parsegian V. A. Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge. Faraday Discuss. 1998;(111):173–246. doi: 10.1039/a806579i. [DOI] [PubMed] [Google Scholar]
- Bezrukov S. M., Vodyanoy I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys J. 1993 Jan;64(1):16–25. doi: 10.1016/S0006-3495(93)81336-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bidwai A. P., Zhang L., Bachmann R. C., Takemoto J. Y. Mechanism of Action of Pseudomonas syringae Phytotoxin, Syringomycin : Stimulation of Red Beet Plasma Membrane ATPase Activity. Plant Physiol. 1987 Jan;83(1):39–43. doi: 10.1104/pp.83.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullock J. O., Kolen E. R., Shear J. L. Ion selectivity of colicin E1: II. Permeability to organic cations. J Membr Biol. 1992 May;128(1):1–16. doi: 10.1007/BF00231866. [DOI] [PubMed] [Google Scholar]
- Cseh R., Benz R. Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change. Biophys J. 1999 Sep;77(3):1477–1488. doi: 10.1016/S0006-3495(99)76995-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
- Dalla Serra M., Fagiuoli G., Nordera P., Bernhart I., Della Volpe C., Di Giorgio D., Ballio A., Menestrina G. The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. Mol Plant Microbe Interact. 1999 May;12(5):391–400. doi: 10.1094/MPMI.1999.12.5.391. [DOI] [PubMed] [Google Scholar]
- Ehrenstein G., Lecar H., Nossal R. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J Gen Physiol. 1970 Jan;55(1):119–133. doi: 10.1085/jgp.55.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epand R. M. Lipid polymorphism and protein-lipid interactions. Biochim Biophys Acta. 1998 Nov 10;1376(3):353–368. doi: 10.1016/s0304-4157(98)00015-x. [DOI] [PubMed] [Google Scholar]
- Feigin A. M., Takemoto J. Y., Wangspa R., Teeter J. H., Brand J. G. Properties of voltage-gated ion channels formed by syringomycin E in planar lipid bilayers. J Membr Biol. 1996 Jan;149(1):41–47. doi: 10.1007/s002329900005. [DOI] [PubMed] [Google Scholar]
- Fuller N., Rand R. P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J. 2001 Jul;81(1):243–254. doi: 10.1016/S0006-3495(01)75695-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruner S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3665–3669. doi: 10.1073/pnas.82.11.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutchison M. L., Tester M. A., Gross D. C. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction. Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):610–620. doi: 10.1094/mpmi-8-0610. [DOI] [PubMed] [Google Scholar]
- Kaulin Y. A., Schagina L. V., Bezrukov S. M., Malev V. V., Feigin A. M., Takemoto J. Y., Teeter J. H., Brand J. G. Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. Biophys J. 1998 Jun;74(6):2918–2925. doi: 10.1016/S0006-3495(98)77999-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kayalar C., Düzgüneş N. Membrane action of colicin E1: detection by the release of carboxyfluorescein and calcein from liposomes. Biochim Biophys Acta. 1986 Aug 7;860(1):51–56. doi: 10.1016/0005-2736(86)90497-9. [DOI] [PubMed] [Google Scholar]
- Keller S. L., Bezrukov S. M., Gruner S. M., Tate M. W., Vodyanoy I., Parsegian V. A. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys J. 1993 Jul;65(1):23–27. doi: 10.1016/S0006-3495(93)81040-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krasilnikov O. V., Da Cruz J. B., Yuldasheva L. N., Varanda W. A., Nogueira R. A. A novel approach to study the geometry of the water lumen of ion channels: colicin Ia channels in planar lipid bilayers. J Membr Biol. 1998 Jan 1;161(1):83–92. doi: 10.1007/s002329900316. [DOI] [PubMed] [Google Scholar]
- Kuzmin P. I., Zimmerberg J., Chizmadzhev Y. A., Cohen F. S. A quantitative model for membrane fusion based on low-energy intermediates. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7235–7240. doi: 10.1073/pnas.121191898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUZZATI V., HUSSON F. The structure of the liquid-crystalline phasis of lipid-water systems. J Cell Biol. 1962 Feb;12:207–219. doi: 10.1083/jcb.12.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundbaek J. A., Andersen O. S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J Gen Physiol. 1994 Oct;104(4):645–673. doi: 10.1085/jgp.104.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundbaek J. A., Andersen O. S. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Biophys J. 1999 Feb;76(2):889–895. doi: 10.1016/S0006-3495(99)77252-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundbaek J. A., Maer A. M., Andersen O. S. Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels. Biochemistry. 1997 May 13;36(19):5695–5701. doi: 10.1021/bi9619841. [DOI] [PubMed] [Google Scholar]
- Melnik E., Latorre R., Hall J. E., Tosteson D. C. Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol. 1977 Feb;69(2):243–257. doi: 10.1085/jgp.69.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters C., Bayer M. J., Bühler S., Andersen J. S., Mann M., Mayer A. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature. 2001 Feb 1;409(6820):581–588. doi: 10.1038/35054500. [DOI] [PubMed] [Google Scholar]
- Raymond L., Slatin S. L., Finkelstein A. Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity. J Membr Biol. 1985;84(2):173–181. doi: 10.1007/BF01872215. [DOI] [PubMed] [Google Scholar]
- Reidl H. H., Grover T. A., Takemoto J. Y. 31P-NMR evidence for cytoplasmic acidification and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimanae. Biochim Biophys Acta. 1989 Mar 6;1010(3):325–329. doi: 10.1016/0167-4889(89)90056-6. [DOI] [PubMed] [Google Scholar]
- Rostovtseva T. K., Aguilella V. M., Vodyanoy I., Bezrukov S. M., Parsegian V. A. Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys J. 1998 Oct;75(4):1783–1792. doi: 10.1016/S0006-3495(98)77620-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schagina L. V., Kaulin Y. A., Feigin A. M., Takemoto J. Y., Brand J. G., Malev V. V. Properties of ionic channels formed by the antibiotic syringomycin E in lipid bilayers: dependence on the electrolyte concentration in the bathing solution. Membr Cell Biol. 1998;12(4):537–555. [PubMed] [Google Scholar]
- Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
- Segre A., Bachmann R. C., Ballio A., Bossa F., Grgurina I., Iacobellis N. S., Marino G., Pucci P., Simmaco M., Takemoto J. Y. The structure of syringomycins A1, E and G. FEBS Lett. 1989 Sep 11;255(1):27–31. doi: 10.1016/0014-5793(89)81054-3. [DOI] [PubMed] [Google Scholar]
- Siskind L. J., Colombini M. The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem. 2000 Dec 8;275(49):38640–38644. doi: 10.1074/jbc.C000587200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatin S. L. Colicin E1 in planar lipid bilayers. Int J Biochem. 1988;20(8):737–744. doi: 10.1016/0020-711x(88)90058-4. [DOI] [PubMed] [Google Scholar]
- Zimmerberg J. How can proteolipids be central players in membrane fusion? Trends Cell Biol. 2001 Jun;11(6):233–235. doi: 10.1016/s0962-8924(01)02003-7. [DOI] [PubMed] [Google Scholar]
- Zimmerberg J, Chernomordik LV. Membrane fusion. Adv Drug Deliv Rev. 1999 Aug 20;38(3):197–205. doi: 10.1016/s0169-409x(99)00029-0. [DOI] [PubMed] [Google Scholar]