Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2052–2066. doi: 10.1016/S0006-3495(02)75553-7

A computer simulation of functional group contributions to free energy in water and a DPPC lipid bilayer.

Tian-xiang Xiang 1, Bradley D Anderson 1
PMCID: PMC1302000  PMID: 11916862

Abstract

A series of all-atom molecular dynamics simulations has been performed to evaluate the contributions of various functional groups to the free energy of solvation in water and a dipalmitoylphospatidylcholine lipid bilayer membrane and to the free energies of solute transfer (Delta(DeltaG(o))X) from water into the ordered-chain interior of the bilayer. Free energies for mutations of the alpha-H atom in p-toluic acid to six different substituents (-CH3, -Cl, -OCH3, -CN, -OH, -COOH) were calculated by a combined thermodynamic integration and perturbation method and compared to literature results from vapor pressure measurements, partition coefficients, and membrane transport experiments. Convergence of the calculated free energies was indicated by substantial declines in standard deviations for the calculated free energies with increased simulation length, by the independence of the ensemble-averaged Boltzmann factors to simulation length, and the weak dependence of hysteresis effects on simulation length over two different simulation lengths and starting from different initial configurations. Calculated values of Delta(DeltaG(o))X correlate linearly with corresponding values obtained from lipid bilayer transport experiments with a slope of 1.1 and from measurements of partition coefficients between water and hexadecane or decadiene, with slopes of 1.1 and 0.9, respectively. Van der Waals interactions between the functional group of interest and the acyl chains in the ordered chain region account for more than 95% of the overall potential energy of interaction. These results support the view that the ordered chain region within the bilayer interior is the barrier domain for transport and that solvation interactions within this region resemble those occurring in a nonpolar hydrocarbon.

Full Text

The Full Text of this article is available as a PDF (739.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. D., Higuchi W. I., Raykar P. V. Heterogeneity effects on permeability-partition coefficient relationships in human stratum corneum. Pharm Res. 1988 Sep;5(9):566–573. doi: 10.1023/a:1015989929342. [DOI] [PubMed] [Google Scholar]
  2. Bassolino-Klimas D., Alper H. E., Stouch T. R. Solute diffusion in lipid bilayer membranes: an atomic level study by molecular dynamics simulation. Biochemistry. 1993 Nov 30;32(47):12624–12637. doi: 10.1021/bi00210a010. [DOI] [PubMed] [Google Scholar]
  3. Chiu S. W., Clark M., Balaji V., Subramaniam S., Scott H. L., Jakobsson E. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J. 1995 Oct;69(4):1230–1245. doi: 10.1016/S0006-3495(95)80005-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis S. S., Higuchi T., Rytting J. H. Determination of thermodynamics of the methylene group in solutions of drug molecules. J Pharm Pharmacol. 1972 Dec;24(Suppl):30P–46P. [PubMed] [Google Scholar]
  5. Diamond J. M., Katz Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol. 1974;17(2):121–154. doi: 10.1007/BF01870176. [DOI] [PubMed] [Google Scholar]
  6. Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
  7. Dix J. A., Kivelson D., Diamond J. M. Molecular motion of small nonelectrolyte molecules in lecithin bilayers. J Membr Biol. 1978 Jun 9;40(4):315–342. doi: 10.1007/BF01874162. [DOI] [PubMed] [Google Scholar]
  8. Francavilla A., Di Leo A., Polimeno L., Conte D., Barone M., Fanizza G., Chiumarulo C., Rizzo G., Rubino M. Nuclear and cytosolic estrogen receptors in human colon carcinoma and in surrounding noncancerous colonic tissue. Gastroenterology. 1987 Dec;93(6):1301–1306. doi: 10.1016/0016-5085(87)90259-9. [DOI] [PubMed] [Google Scholar]
  9. Honig C. R., Reddy Y. S. Calcium, tropomyosin, and actomyosin as controls of calcium binding by troponin. Recent Adv Stud Cardiac Struct Metab. 1975;8:233–240. [PubMed] [Google Scholar]
  10. IWASA J., FUJITA T., HANSCH C. SUBSTITUENT CONSTANTS FOR ALIPHATIC FUNCTIONS OBTAINED FROM PARTITION COEFFICIENTS. J Med Chem. 1965 Mar;8:150–153. doi: 10.1021/jm00326a002. [DOI] [PubMed] [Google Scholar]
  11. Katz Y., Diamond J. M. Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water. J Membr Biol. 1974;17(2):101–120. doi: 10.1007/BF01870175. [DOI] [PubMed] [Google Scholar]
  12. Mezei M., Beveridge D. L. Free energy simulations. Ann N Y Acad Sci. 1986;482:1–23. doi: 10.1111/j.1749-6632.1986.tb20933.x. [DOI] [PubMed] [Google Scholar]
  13. Nagle J. F., Zhang R., Tristram-Nagle S., Sun W., Petrache H. I., Suter R. M. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996 Mar;70(3):1419–1431. doi: 10.1016/S0006-3495(96)79701-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
  15. Pohorille A., Wilson M. A. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces. J Chem Phys. 1996 Mar 8;104(10):3760–3773. doi: 10.1063/1.471030. [DOI] [PubMed] [Google Scholar]
  16. Prosser R. S., Davis J. H., Mayer C., Weisz K., Kothe G. Deuterium NMR relaxation studies of peptide-lipid interactions. Biochemistry. 1992 Oct 6;31(39):9355–9363. doi: 10.1021/bi00154a005. [DOI] [PubMed] [Google Scholar]
  17. Rytting J. H., Huston L. P., Higuchi T. Thermodynamic group contributions for hydroxyl, amino, and methylene groups. J Pharm Sci. 1978 May;67(5):615–618. doi: 10.1002/jps.2600670510. [DOI] [PubMed] [Google Scholar]
  18. Schindler H., Seelig J. Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. Biochemistry. 1975 Jun 3;14(11):2283–2287. doi: 10.1021/bi00682a001. [DOI] [PubMed] [Google Scholar]
  19. Seelig A., Seelig J. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry. 1974 Nov 5;13(23):4839–4845. doi: 10.1021/bi00720a024. [DOI] [PubMed] [Google Scholar]
  20. Seelig J., Niederberger W. Two pictures of a lipid bilayer. A comparison between deuterium label and spin-label experiments. Biochemistry. 1974 Apr 9;13(8):1585–1588. doi: 10.1021/bi00705a005. [DOI] [PubMed] [Google Scholar]
  21. Smondyrev A. M., Berkowitz M. L. Molecular dynamics simulation of DPPC bilayer in DMSO. Biophys J. 1999 May;76(5):2472–2478. doi: 10.1016/S0006-3495(99)77402-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sugita Y., Kitao A. Improved protein free energy calculation by more accurate treatment of nonbonded energy: application to chymotrypsin inhibitor 2, V57A. Proteins. 1998 Mar 1;30(4):388–400. [PubMed] [Google Scholar]
  23. Tu K., Tobias D. J., Klein M. L. Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. Biophys J. 1995 Dec;69(6):2558–2562. doi: 10.1016/S0006-3495(95)80126-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Walter A., Gutknecht J. Monocarboxylic acid permeation through lipid bilayer membranes. J Membr Biol. 1984;77(3):255–264. doi: 10.1007/BF01870573. [DOI] [PubMed] [Google Scholar]
  25. Wang J., Dixon R., Kollman P. A. Ranking ligand binding affinities with avidin: a molecular dynamics-based interaction energy study. Proteins. 1999 Jan 1;34(1):69–81. [PubMed] [Google Scholar]
  26. Wang W., Donini O., Reyes C. M., Kollman P. A. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct. 2001;30:211–243. doi: 10.1146/annurev.biophys.30.1.211. [DOI] [PubMed] [Google Scholar]
  27. White S. H., Wimley W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta. 1998 Nov 10;1376(3):339–352. doi: 10.1016/s0304-4157(98)00021-5. [DOI] [PubMed] [Google Scholar]
  28. Xiang T. X., Anderson B. D. Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape. Biophys J. 1998 Dec;75(6):2658–2671. doi: 10.1016/S0006-3495(98)77711-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Xiang T. X., Anderson B. D. Molecular distributions in interphases: statistical mechanical theory combined with molecular dynamics simulation of a model lipid bilayer. Biophys J. 1994 Mar;66(3 Pt 1):561–572. doi: 10.1016/s0006-3495(94)80833-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xiang T. X., Anderson B. D. Substituent contributions to the transport of substituted p-toluic acids across lipid bilayer membranes. J Pharm Sci. 1994 Oct;83(10):1511–1518. doi: 10.1002/jps.2600831027. [DOI] [PubMed] [Google Scholar]
  31. Xiang T. X., Chen X., Anderson B. D. Transport methods for probing the barrier domain of lipid bilayer membranes. Biophys J. 1992 Jul;63(1):78–88. doi: 10.1016/S0006-3495(92)81581-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Xiang T., Anderson B. D. Influence of a transmembrane protein on the permeability of small molecules across lipid membranes. J Membr Biol. 2000 Feb 1;173(3):187–201. doi: 10.1007/s002320001019. [DOI] [PubMed] [Google Scholar]
  33. Xiang T., Xu Y., Anderson B. D. The barrier domain for solute permeation varies with lipid bilayer phase structure. J Membr Biol. 1998 Sep 1;165(1):77–90. doi: 10.1007/s002329900422. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES