Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2081–2089. doi: 10.1016/S0006-3495(02)75555-0

Agarose-dextran gels as synthetic analogs of glomerular basement membrane: water permeability.

Jeffrey A White 1, William M Deen 1
PMCID: PMC1302002  PMID: 11916864

Abstract

Novel agarose-dextran hydrogels were synthesized and their suitability as experimental models of glomerular basement membrane was examined by measuring their Darcy (hydraulic) permeabilities (kappa). Immobilization of large dextran molecules in agarose was achieved by electron beam irradiation. Composite gels were made with agarose volume fractions (phi(a)) of 0.04 or 0.08 and dextran volume fractions (phi(d)) ranging from 0 to 0.02 (fiber volume/gel volume), using either of two dextran molecular weights (500 or 2000). At either agarose concentration and for either size of dextran, kappa decreased markedly as the amount of dextran was increased. Statistically significant deviations from the value of kappa for pure agarose were obtained for remarkably small volume fractions of dextran: phi(d) > or = 0.0003 for phi(a) = 0.04 and phi(d) > or = 0.001 for phi(a) = 0.08. The Darcy permeabilities were much more sensitive to phi(d) than to phi(a), and were as much as 26 times smaller than those of pure agarose. Although phi(d) was an important variable, dextran molecular weight was not. The effects of dextran addition on kappa were described fairly well using simple structural idealizations. At high agarose concentrations, the dextran chains behaved as fine fibers interspersed among coarse agarose fibrils, whereas, at low concentrations, the dextran molecules began to resemble spherical obstacles embedded in agarose gels. The ability to achieve physiologically relevant Darcy permeabilities with these materials (as low as 1.6 nm2) makes them an attractive experimental model for glomerular basement membrane and possibly other extracellular matrices.

Full Text

The Full Text of this article is available as a PDF (237.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin A. L., Wilson L. M. Endothelium increases medial hydraulic conductance of aorta, possibly by release of EDRF. Am J Physiol. 1993 Jan;264(1 Pt 2):H26–H32. doi: 10.1152/ajpheart.1993.264.1.H26. [DOI] [PubMed] [Google Scholar]
  2. Blouch K., Deen W. M., Fauvel J. P., Bialek J., Derby G., Myers B. D. Molecular configuration and glomerular size selectivity in healthy and nephrotic humans. Am J Physiol. 1997 Sep;273(3 Pt 2):F430–F437. doi: 10.1152/ajprenal.1997.273.3.F430. [DOI] [PubMed] [Google Scholar]
  3. Bohrer M. P., Deen W. M., Robertson C. R., Troy J. L., Brenner B. M. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J Gen Physiol. 1979 Nov;74(5):583–593. doi: 10.1085/jgp.74.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolton G. R., Deen W. M., Daniels B. S. Assessment of the charge selectivity of glomerular basement membrane using Ficoll sulfate. Am J Physiol. 1998 May;274(5 Pt 2):F889–F896. doi: 10.1152/ajprenal.1998.274.5.F889. [DOI] [PubMed] [Google Scholar]
  5. Boyd-White J., Williams J. C., Jr Effect of cross-linking on matrix permeability. A model for AGE-modified basement membranes. Diabetes. 1996 Mar;45(3):348–353. doi: 10.2337/diab.45.3.348. [DOI] [PubMed] [Google Scholar]
  6. Clague DS, Kandhai BD, Zhang R, Sloot PM. Hydraulic permeability of (un)bounded fibrous media using the lattice boltzmann method. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):616–625. doi: 10.1103/physreve.61.616. [DOI] [PubMed] [Google Scholar]
  7. Comper W. D., Lee A. S., Tay M., Adal Y. Anionic charge concentration of rat kidney glomeruli and glomerular basement membrane. Biochem J. 1993 Feb 1;289(Pt 3):647–652. doi: 10.1042/bj2890647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daniels B. S., Deen W. M., Mayer G., Meyer T., Hostetter T. H. Glomerular permeability barrier in the rat. Functional assessment by in vitro methods. J Clin Invest. 1993 Aug;92(2):929–936. doi: 10.1172/JCI116668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daniels B. S., Hauser E. B., Deen W. M., Hostetter T. H. Glomerular basement membrane: in vitro studies of water and protein permeability. Am J Physiol. 1992 Jun;262(6 Pt 2):F919–F926. doi: 10.1152/ajprenal.1992.262.6.F919. [DOI] [PubMed] [Google Scholar]
  10. Dea I. C., Moorhouse R., Rees D. A., Arnott S., Guss J. M., Balazs E. A. Hyaluronic acid: a novel, double helical molecule. Science. 1973 Feb 9;179(4073):560–562. doi: 10.1126/science.179.4073.560. [DOI] [PubMed] [Google Scholar]
  11. Deen W. M., Lazzara M. J., Myers B. D. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol. 2001 Oct;281(4):F579–F596. doi: 10.1152/ajprenal.2001.281.4.F579. [DOI] [PubMed] [Google Scholar]
  12. Edwards A., Daniels B. S., Deen W. M. Hindered transport of macromolecules in isolated glomeruli. II. Convection and pressure effects in basement membrane. Biophys J. 1997 Jan;72(1):214–222. doi: 10.1016/S0006-3495(97)78660-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson E. M., Berk D. A., Jain R. K., Deen W. M. Diffusion and partitioning of proteins in charged agarose gels. Biophys J. 1995 Apr;68(4):1561–1568. doi: 10.1016/S0006-3495(95)80328-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson E. M., Berk D. A., Jain R. K., Deen W. M. Hindered diffusion in agarose gels: test of effective medium model. Biophys J. 1996 Feb;70(2):1017–1023. doi: 10.1016/S0006-3495(96)79645-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson M., Shapiro A., Ethier C. R., Kamm R. D. Modulation of outflow resistance by the pores of the inner wall endothelium. Invest Ophthalmol Vis Sci. 1992 Apr;33(5):1670–1675. [PubMed] [Google Scholar]
  16. Netti P. A., Berk D. A., Swartz M. A., Grodzinsky A. J., Jain R. K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000 May 1;60(9):2497–2503. [PubMed] [Google Scholar]
  17. Parthasarathy N., Spiro R. G. Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J Biol Chem. 1981 Jan 10;256(1):507–513. [PubMed] [Google Scholar]
  18. Pernodet N., Maaloum M., Tinland B. Pore size of agarose gels by atomic force microscopy. Electrophoresis. 1997 Jan;18(1):55–58. doi: 10.1002/elps.1150180111. [DOI] [PubMed] [Google Scholar]
  19. Pluen A., Netti P. A., Jain R. K., Berk D. A. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys J. 1999 Jul;77(1):542–552. doi: 10.1016/S0006-3495(99)76911-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Treppo S., Koepp H., Quan E. C., Cole A. A., Kuettner K. E., Grodzinsky A. J. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res. 2000 Sep;18(5):739–748. doi: 10.1002/jor.1100180510. [DOI] [PubMed] [Google Scholar]
  21. Walton H. A., Byrne J., Robinson G. B. Studies of the permeation properties of glomerular basement membrane: cross-linking renders glomerular basement membrane permeable to protein. Biochim Biophys Acta. 1992 Mar 20;1138(3):173–183. doi: 10.1016/0925-4439(92)90035-l. [DOI] [PubMed] [Google Scholar]
  22. Yurchenco P. D., Cheng Y. S., Colognato H. Laminin forms an independent network in basement membranes. J Cell Biol. 1992 Jun;117(5):1119–1133. doi: 10.1083/jcb.117.5.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yurchenco P. D., Ruben G. C. Type IV collagen lateral associations in the EHS tumor matrix. Comparison with amniotic and in vitro networks. Am J Pathol. 1988 Aug;132(2):278–291. [PMC free article] [PubMed] [Google Scholar]
  24. Yurchenco P. D., Schittny J. C. Molecular architecture of basement membranes. FASEB J. 1990 Apr 1;4(6):1577–1590. doi: 10.1096/fasebj.4.6.2180767. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES