Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2101–2110. doi: 10.1016/S0006-3495(02)75557-4

The depth of porphyrin in a membrane and the membrane's physical properties affect the photosensitizing efficiency.

Adina Lavi 1, Hana Weitman 1, Robert T Holmes 1, Kevin M Smith 1, Benjamin Ehrenberg 1
PMCID: PMC1302004  PMID: 11916866

Abstract

Photosensitized biological processes, as applied in photodynamic therapy, are based on light-triggered generation of molecular singlet oxygen by a membrane-residing sensitizer. Most of the sensitizers currently used are hydrophobic or amphiphilic porphyrins and their analogs. The possible activity of the short-lived singlet oxygen is limited to the time it is diffusing in the membrane, before it emerges into the aqueous environment. In this paper we demonstrate the enhancement of the photosensitization process that is obtained by newly synthesized protoporphyrin derivatives, which insert their tetrapyrrole chromophore deeper into the lipid bilayer of liposomes. The insertion was measured by fluorescence quenching by iodide and the photosensitization efficiency was measured with 9,10-dimethylanthracene, a fluorescent chemical target for singlet oxygen. We also show that when the bilayer undergoes a melting phase transition, or when it is fluidized by benzyl alcohol, the sensitization efficiency decreases because of the enhanced diffusion of singlet oxygen. The addition of cholesterol or of dimyristoyl phosphatydilcholine to the bilayer moves the porphyrin deeper into the bilayer; however, the ensuing effect on the sensitization efficiency is different in these two cases. These results could possibly define an additional criterion for the choice and design of hydrophobic, membrane-bound photosensitizers.

Full Text

The Full Text of this article is available as a PDF (141.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams F. S., London E. Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry. 1993 Oct 12;32(40):10826–10831. doi: 10.1021/bi00091a038. [DOI] [PubMed] [Google Scholar]
  2. Asuncion-Punzalan E., London E. Control of the depth of molecules within membranes by polar groups: determination of the location of anthracene-labeled probes in model membranes by parallax analysis of nitroxide-labeled phospholipid induced fluorescence quenching. Biochemistry. 1995 Sep 12;34(36):11460–11466. doi: 10.1021/bi00036a019. [DOI] [PubMed] [Google Scholar]
  3. Barenholz Y., Cohen T., Korenstein R., Ottolenghi M. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes. Biophys J. 1991 Jul;60(1):110–124. doi: 10.1016/S0006-3495(91)82035-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Hur E., Horowitz B. Advances in photochemical approaches for blood sterilization. Photochem Photobiol. 1995 Sep;62(3):383–388. doi: 10.1111/j.1751-1097.1995.tb02358.x. [DOI] [PubMed] [Google Scholar]
  5. Berg K., Moan J. Lysosomes and microtubules as targets for photochemotherapy of cancer. Photochem Photobiol. 1997 Mar;65(3):403–409. doi: 10.1111/j.1751-1097.1997.tb08578.x. [DOI] [PubMed] [Google Scholar]
  6. Boegheim J. P., Lagerberg J. W., Dubbelman T. M., Tijssen K., Tanke H. J., Van Der Meulen J., Van Steveninck J. Photodynamic effects of hematoporphyrin derivative on the uptake of rhodamine 123 by mitochondria of intact murine L929 fibroblasts and Chinese ovary K1 cells. Photochem Photobiol. 1988 Nov;48(5):613–620. doi: 10.1111/j.1751-1097.1988.tb02871.x. [DOI] [PubMed] [Google Scholar]
  7. Bown S. G. Photodynamic therapy to scientists and clinicians--one world or two? J Photochem Photobiol B. 1990 Jun;6(1-2):1–12. doi: 10.1016/1011-1344(90)85069-9. [DOI] [PubMed] [Google Scholar]
  8. Brown S. B., Shillcock M., Jones P. Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochem J. 1976 Feb 1;153(2):279–285. doi: 10.1042/bj1530279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Castro D. J., Saxton R. E., Lufkin R. B., Haugland R. P., Zwarun A. A., Fetterman H. R., Soudant J., Castro D. J., Ward P. H., Kangarloo H. Future directions of laser phototherapy for diagnosis and treatment of malignancies: fantasy, fallacy, or reality? Laryngoscope. 1991 Jul;101(7 Pt 2 Suppl 55):1–10. doi: 10.1288/00005537-199107000-00026. [DOI] [PubMed] [Google Scholar]
  10. Chattopadhyay A., London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 1987 Jan 13;26(1):39–45. doi: 10.1021/bi00375a006. [DOI] [PubMed] [Google Scholar]
  11. Cogan U., Shinitzky M., Weber G., Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry. 1973 Jan 30;12(3):521–528. doi: 10.1021/bi00727a026. [DOI] [PubMed] [Google Scholar]
  12. Colley C. M., Metcalfe J. C. The localisation of small molecules in lipid bilayers. FEBS Lett. 1972 Aug 15;24(3):241–246. doi: 10.1016/0014-5793(72)80364-8. [DOI] [PubMed] [Google Scholar]
  13. Deckmann M., Haimovitz R., Shinitzky M. Selective release of integral proteins from human erythrocyte membranes by hydrostatic pressure. Biochim Biophys Acta. 1985 Dec 5;821(2):334–340. doi: 10.1016/0005-2736(85)90103-8. [DOI] [PubMed] [Google Scholar]
  14. Dougherty T. J. Photodynamic therapy. Photochem Photobiol. 1993 Dec;58(6):895–900. doi: 10.1111/j.1751-1097.1993.tb04990.x. [DOI] [PubMed] [Google Scholar]
  15. Dougherty T. J. Photosensitizers: therapy and detection of malignant tumors. Photochem Photobiol. 1987 Jun;45(6):879–889. doi: 10.1111/j.1751-1097.1987.tb07898.x. [DOI] [PubMed] [Google Scholar]
  16. Ehrenberg B., Anderson J. L., Foote C. S. Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Photochem Photobiol. 1998 Aug;68(2):135–140. [PubMed] [Google Scholar]
  17. Ehrenberg B. Assessment of the partitioning of probes to membranes by spectroscopic titration. J Photochem Photobiol B. 1992 Jul 30;14(4):383–386. doi: 10.1016/1011-1344(92)85117-d. [DOI] [PubMed] [Google Scholar]
  18. Ehrenberg B., Gross E., Nitzan Y., Malik Z. Electric depolarization of photosensitized cells: lipid vs. protein alterations. Biochim Biophys Acta. 1993 Sep 19;1151(2):257–264. doi: 10.1016/0005-2736(93)90110-l. [DOI] [PubMed] [Google Scholar]
  19. Ehrenberg B., Gross E. The effect of liposomes' membrane composition on the binding of the photosensitizers Hpd and photofrin II. Photochem Photobiol. 1988 Oct;48(4):461–466. doi: 10.1111/j.1751-1097.1988.tb02846.x. [DOI] [PubMed] [Google Scholar]
  20. Ehrenberg B., Malik Z., Nitzan Y. Fluorescence spectral changes of hematoporphyrin derivative upon binding to lipid vesicles, Staphylococcus aureus and Escherichia coli cells. Photochem Photobiol. 1985 Apr;41(4):429–435. doi: 10.1111/j.1751-1097.1985.tb03508.x. [DOI] [PubMed] [Google Scholar]
  21. Fischkoff S., Vanderkooi J. M. Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol. 1975 May;65(5):663–676. doi: 10.1085/jgp.65.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gomer C. J. Preclinical examination of first and second generation photosensitizers used in photodynamic therapy. Photochem Photobiol. 1991 Dec;54(6):1093–1107. doi: 10.1111/j.1751-1097.1991.tb02133.x. [DOI] [PubMed] [Google Scholar]
  23. Gorman A. A., Rodgers M. A. Current perspectives of singlet oxygen detection in biological environments. J Photochem Photobiol B. 1992 Jul 15;14(3):159–176. doi: 10.1016/1011-1344(92)85095-c. [DOI] [PubMed] [Google Scholar]
  24. Gottfried V., Peled D., Winkelman J. W., Kimel S. Photosensitizers in organized media: singlet oxygen production and spectral properties. Photochem Photobiol. 1988 Aug;48(2):157–163. doi: 10.1111/j.1751-1097.1988.tb02801.x. [DOI] [PubMed] [Google Scholar]
  25. Gross E., Ehrenberg B., Johnson F. M. Singlet oxygen generation by porphyrins and the kinetics of 9,10-dimethylanthracene photosensitization in liposomes. Photochem Photobiol. 1993 May;57(5):808–813. doi: 10.1111/j.1751-1097.1993.tb09215.x. [DOI] [PubMed] [Google Scholar]
  26. Gross E., Ehrenberg B. The partition and distribution of porphyrins in liposomal membranes. A spectroscopic study. Biochim Biophys Acta. 1989 Jul 24;983(1):118–122. doi: 10.1016/0005-2736(89)90388-x. [DOI] [PubMed] [Google Scholar]
  27. Gross E., Malik Z., Ehrenberg B. Effects of membrane physical parameters on hematoporphyrin-derivative binding to liposomes: a spectroscopic study. J Membr Biol. 1987;97(3):215–221. doi: 10.1007/BF01869224. [DOI] [PubMed] [Google Scholar]
  28. Henderson B. W., Dougherty T. J. How does photodynamic therapy work? Photochem Photobiol. 1992 Jan;55(1):145–157. doi: 10.1111/j.1751-1097.1992.tb04222.x. [DOI] [PubMed] [Google Scholar]
  29. Hoebeke M., Piette J., van de Vorst A. Photosensitized production of singlet oxygen by merocyanine 540 bound to liposomes. J Photochem Photobiol B. 1991 Jun;9(3-4):281–294. doi: 10.1016/1011-1344(91)80166-f. [DOI] [PubMed] [Google Scholar]
  30. Kachel K., Asuncion-Punzalan E., London E. Anchoring of tryptophan and tyrosine analogs at the hydrocarbon-polar boundary in model membrane vesicles: parallax analysis of fluorescence quenching induced by nitroxide-labeled phospholipids. Biochemistry. 1995 Nov 28;34(47):15475–15479. doi: 10.1021/bi00047a012. [DOI] [PubMed] [Google Scholar]
  31. Kanofsky J. R. Singlet oxygen production by biological systems. Chem Biol Interact. 1989;70(1-2):1–28. doi: 10.1016/0009-2797(89)90059-8. [DOI] [PubMed] [Google Scholar]
  32. Kessel D. Hematoporphyrin and HPD: photophysics, photochemistry and phototherapy. Photochem Photobiol. 1984 Jun;39(6):851–859. doi: 10.1111/j.1751-1097.1984.tb08871.x. [DOI] [PubMed] [Google Scholar]
  33. Kuszaj S., Kaszycki P., Wasylewski Z. A fluorescence quenching study on protoporphyrin IX in a model membrane system. Chem Phys Lipids. 1996 Sep 30;83(2):153–160. doi: 10.1016/0009-3084(96)02605-9. [DOI] [PubMed] [Google Scholar]
  34. Lam S., Kostashuk E. C., Coy E. P., Laukkanen E., LeRiche J. C., Mueller H. A., Szasz I. J. A randomized comparative study of the safety and efficacy of photodynamic therapy using Photofrin II combined with palliative radiotherapy versus palliative radiotherapy alone in patients with inoperable obstructive non-small cell bronchogenic carcinoma. Photochem Photobiol. 1987 Nov;46(5):893–897. doi: 10.1111/j.1751-1097.1987.tb04865.x. [DOI] [PubMed] [Google Scholar]
  35. Langner M., Hui S. W. Iodide penetration into lipid bilayers as a probe of membrane lipid organization. Chem Phys Lipids. 1991 Dec;60(2):127–132. doi: 10.1016/0009-3084(91)90035-a. [DOI] [PubMed] [Google Scholar]
  36. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  37. Li J. H., Guo Z. H., Jin M. L., Zhao F. Y., Cai W. M., Gao M. L., Shu M. Y., Zou J. Photodynamic therapy in the treatment of malignant tumours: an analysis of 540 cases. J Photochem Photobiol B. 1990 Jun;6(1-2):149–155. doi: 10.1016/1011-1344(90)85084-a. [DOI] [PubMed] [Google Scholar]
  38. Malik Z., Djaldetti M. Destruction of erythroleukemia, myelocytic leukemia and Burkitt lymphoma cells by photoactivated protoporphyrin. Int J Cancer. 1980 Oct 15;26(4):495–500. doi: 10.1002/ijc.2910260415. [DOI] [PubMed] [Google Scholar]
  39. McCaughan J. S., Jr Overview of experiences with photodynamic therapy for malignancy in 192 patients. Photochem Photobiol. 1987 Nov;46(5):903–909. doi: 10.1111/j.1751-1097.1987.tb04867.x. [DOI] [PubMed] [Google Scholar]
  40. Moan J., Berg K. Photochemotherapy of cancer: experimental research. Photochem Photobiol. 1992 Jun;55(6):931–948. doi: 10.1111/j.1751-1097.1992.tb08541.x. [DOI] [PubMed] [Google Scholar]
  41. Moro F., Goñi F. M., Urbaneja M. A. Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers. FEBS Lett. 1993 Sep 13;330(2):129–132. doi: 10.1016/0014-5793(93)80257-u. [DOI] [PubMed] [Google Scholar]
  42. Mulroney C. M., Glück S., Ho A. D. The use of photodynamic therapy in bone marrow purging. Semin Oncol. 1994 Dec;21(6 Suppl 15):24–27. [PubMed] [Google Scholar]
  43. North J., Neyndorff H., Levy J. G. Photosensitizers as virucidal agents. J Photochem Photobiol B. 1993 Feb;17(2):99–108. doi: 10.1016/1011-1344(93)80002-q. [DOI] [PubMed] [Google Scholar]
  44. Paardekooper M., Van den Broek P. J., De Bruijne A. W., Elferink J. G., Dubbelman T. M., Van Steveninck J. Photodynamic treatment of yeast cells with the dye toluidine blue: all-or-none loss of plasma membrane barrier properties. Biochim Biophys Acta. 1992 Jul 8;1108(1):86–90. doi: 10.1016/0005-2736(92)90117-5. [DOI] [PubMed] [Google Scholar]
  45. Pottier R., Truscott T. G. The photochemistry of haematoporphyrin and related systems. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Sep;50(3):421–452. doi: 10.1080/09553008614550851. [DOI] [PubMed] [Google Scholar]
  46. Rodgers M. A. On the problems involved in detecting luminescence from singlet oxygen in biological specimens. J Photochem Photobiol B. 1988 Mar;1(3):371–373. doi: 10.1016/1011-1344(88)85024-3. [DOI] [PubMed] [Google Scholar]
  47. Roslaniec M., Weitman H., Freeman D., Mazur Y., Ehrenberg B. Liposome binding constants and singlet oxygen quantum yields of hypericin, tetrahydroxy helianthrone and their derivatives: studies in organic solutions and in liposomes. J Photochem Photobiol B. 2000 Sep;57(2-3):149–158. doi: 10.1016/s1011-1344(00)00090-7. [DOI] [PubMed] [Google Scholar]
  48. Schuitmaker J. J., Baas P., van Leengoed H. L., van der Meulen F. W., Star W. M., van Zandwijk N. Photodynamic therapy: a promising new modality for the treatment of cancer. J Photochem Photobiol B. 1996 Jun;34(1):3–12. doi: 10.1016/1011-1344(96)07342-3. [DOI] [PubMed] [Google Scholar]
  49. Shinitzky M., Inbar M. Microviscosity parameters and protein mobility in biological membranes. Biochim Biophys Acta. 1976 Apr 16;433(1):133–149. doi: 10.1016/0005-2736(76)90183-8. [DOI] [PubMed] [Google Scholar]
  50. Simon S. A., McIntosh T. J., Latorre R. Influence of cholesterol on water penetration into bilayers. Science. 1982 Apr 2;216(4541):65–67. doi: 10.1126/science.7063872. [DOI] [PubMed] [Google Scholar]
  51. Specht K. G., Rodgers M. A. Plasma membrane depolarization and calcium influx during cell injury by photodynamic action. Biochim Biophys Acta. 1991 Nov 18;1070(1):60–68. doi: 10.1016/0005-2736(91)90146-y. [DOI] [PubMed] [Google Scholar]
  52. Zavoico G. B., Chandler L., Kutchai H. Perturbation of egg phosphatidylcholine and dipalmitoylphosphatidylcholine multilamellar vesicles by n-alkanols. A fluorescent probe study. Biochim Biophys Acta. 1985 Jan 25;812(2):299–312. doi: 10.1016/0005-2736(85)90304-9. [DOI] [PubMed] [Google Scholar]
  53. van Hillegersberg R., Kort W. J., Wilson J. H. Current status of photodynamic therapy in oncology. Drugs. 1994 Oct;48(4):510–527. doi: 10.2165/00003495-199448040-00003. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES