Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2111–2122. doi: 10.1016/S0006-3495(02)75558-6

Structural characterization of weakly attached cross-bridges in the A*M*ATP state in permeabilized rabbit psoas muscle.

S Xu 1, J Gu 1, G Melvin 1, L C Yu 1
PMCID: PMC1302005  PMID: 11916867

Abstract

It is well established that in a skeletal muscle under relaxing conditions, cross-bridges exist in a mixture of four weak binding states in equilibrium (A*M*ATP, A*M*ADP*P(i), M*ATP, and M*ADP*P(i)). It has been shown that these four weak binding states are in the pathway to force generation. In the past their structural, biochemical, and mechanical properties have been characterized as a group. However, it was shown that the myosin heads in the M*ATP state exhibited a disordered distribution along the thick filament, while in the M*ADP*P(i) state they were well ordered. It follows that the structures of the weakly attached states of A*M*ATP and A*M*ADP*P(i) could well be different. Individual structures of the two attached states could not be assigned because protocol for isolating the two states has not been available until recently. In the present study, muscle fibers are reacted with N-phenylmaleimide such that ATP hydrolysis is inhibited, i.e., the cross-bridge population under relaxing conditions is distributed only between the two states of M*ATP and A*M*ATP. Two-dimensional x-ray diffraction was applied to determine the structural characteristics of the attached A*M*ATP state. Because the detached state of M*ATP is disordered and does not contribute to layer line intensities, changes as a result of increasing attachment in the A*M*ATP state are attributable to that state alone. The equilibrium toward the attached state was achieved by lowering the ionic strength. The results show that upon attachment, both the myosin and the first actin associated layer lines increased intensities, while the sixth actin layer line was not significantly affected. However, the intensities remain weak despite substantial attachment. The results, together with modeling (see J. Gu, S. Xu and L. C. Yu, 2002, Biophys. J. 82:2123-2133), suggest that there is a wide range of orientation of the attached A*M*ATP cross-bridges while the myosin heads maintain some degree of helical distribution on the thick filament, suggesting a high degree of flexibility in the actomyosin complex. Furthermore, the lack of sensitivity of the sixth actin layer line suggests that the binding site on actin differs from the putative site for rigor binding. The significance of the flexibility in the A*M*ATP complex in the process of force generation is discussed.

Full Text

The Full Text of this article is available as a PDF (396.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett V. A., Ehrlich A., Schoenberg M. Formation of ATP-insensitive weakly-binding crossbridges in single rabbit psoas fibers by treatment with phenylmaleimide or para-phenylenedimaleimide. Biophys J. 1992 Feb;61(2):358–367. doi: 10.1016/S0006-3495(92)81842-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnett V. A., Schoenberg M. The strength of binding of the weakly-binding crossbridge created by sulfhydryl modification has very low calcium sensitivity. Adv Exp Med Biol. 1993;332:133–140. doi: 10.1007/978-1-4615-2872-2_12. [DOI] [PubMed] [Google Scholar]
  3. Bobkov A. A., Reisler E. Is SH1-SH2-cross-linked myosin subfragment 1 a structural analog of the weakly-bound state of myosin? Biophys J. 2000 Jul;79(1):460–467. doi: 10.1016/S0006-3495(00)76307-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner B., Eisenberg E. Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci U S A. 1986 May;83(10):3542–3546. doi: 10.1073/pnas.83.10.3542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner B., Schoenberg M., Chalovich J. M., Greene L. E., Eisenberg E. Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7288–7291. doi: 10.1073/pnas.79.23.7288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brenner B. The cross-bridge cycle in muscle. Mechanical, biochemical, and structural studies on single skinned rabbit psoas fibers to characterize cross-bridge kinetics in muscle for correlation with the actomyosin-ATPase in solution. Basic Res Cardiol. 1986;81 (Suppl 1):1–15. doi: 10.1007/978-3-662-11374-5_1. [DOI] [PubMed] [Google Scholar]
  7. Brenner B., Yu L. C., Chalovich J. M. Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5739–5743. doi: 10.1073/pnas.88.13.5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brenner B., Yu L. C. Equatorial x-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing. Biophys J. 1985 Nov;48(5):829–834. doi: 10.1016/S0006-3495(85)83841-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brenner B., Yu L. C., Greene L. E., Eisenberg E., Schoenberg M. Ca2+-sensitive cross-bridge dissociation in the presence of magnesium pyrophosphate in skinned rabbit psoas fibers. Biophys J. 1986 Dec;50(6):1101–1108. doi: 10.1016/S0006-3495(86)83554-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brenner B., Yu L. C., Podolsky R. J. X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths. Biophys J. 1984 Sep;46(3):299–306. doi: 10.1016/S0006-3495(84)84026-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chalovich J. M. Actin mediated regulation of muscle contraction. Pharmacol Ther. 1992;55(2):95–148. doi: 10.1016/0163-7258(92)90013-p. [DOI] [PubMed] [Google Scholar]
  12. Chalovich J. M., Greene L. E., Eisenberg E. Crosslinked myosin subfragment 1: a stable analogue of the subfragment-1.ATP complex. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4909–4913. doi: 10.1073/pnas.80.16.4909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ehrlich A., Barnett V. A., Chen H. C., Schoenberg M. The site and stoichiometry of the N-phenylmaleimide reaction with myosin when weakly-binding crossbridges are formed in skinned rabbit psoas fibers. Biochim Biophys Acta. 1995 Nov 21;1232(1-2):13–20. doi: 10.1016/0005-2728(95)00094-6. [DOI] [PubMed] [Google Scholar]
  14. Eisenberg E., Hill T. L. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
  15. Fisher A. J., Smith C. A., Thoden J., Smith R., Sutoh K., Holden H. M., Rayment I. Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction. Biophys J. 1995 Apr;68(4 Suppl):19S–28S. [PMC free article] [PubMed] [Google Scholar]
  16. Frisbie S. M., Xu S., Chalovich J. M., Yu L. C. Characterizations of cross-bridges in the presence of saturating concentrations of MgAMP-PNP in rabbit permeabilized psoas muscle. Biophys J. 1998 Jun;74(6):3072–3082. doi: 10.1016/S0006-3495(98)78014-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
  18. Gu Jin, Xu Sengen, Yu Leepo C. A model of cross-bridge attachment to actin in the A*M*ATP state based on x-ray diffraction from permeabilized rabbit psoas muscle. Biophys J. 2002 Apr;82(4):2123–2133. doi: 10.1016/S0006-3495(02)75559-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Houdusse A., Szent-Gyorgyi A. G., Cohen C. Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11238–11243. doi: 10.1073/pnas.200376897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  21. Huxley H. E., Faruqi A. R., Kress M., Bordas J., Koch M. H. Time-resolved X-ray diffraction studies of the myosin layer-line reflections during muscle contraction. J Mol Biol. 1982 Jul 15;158(4):637–684. doi: 10.1016/0022-2836(82)90253-4. [DOI] [PubMed] [Google Scholar]
  22. Juanhuix J., Bordas J., Campmany J., Svensson A., Bassford M. L., Narayanan T. Axial disposition of myosin heads in isometrically contracting muscles. Biophys J. 2001 Mar;80(3):1429–1441. doi: 10.1016/S0006-3495(01)76115-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kim D. S., Takezawa Y., Ogino M., Kobayashi T., Arata T., Wakabayashi K. X-ray diffraction studies on the structural changes of rigor muscles induced by binding of phosphate analogs in the presence of MgADP. Biophys Chem. 1998 Aug 4;74(1):71–82. doi: 10.1016/s0301-4622(98)00166-5. [DOI] [PubMed] [Google Scholar]
  24. Kraft T., Chalovich J. M., Yu L. C., Brenner B. Parallel inhibition of active force and relaxed fiber stiffness by caldesmon fragments at physiological ionic strength and temperature conditions: additional evidence that weak cross-bridge binding to actin is an essential intermediate for force generation. Biophys J. 1995 Jun;68(6):2404–2418. doi: 10.1016/S0006-3495(95)80423-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kraft T., Mattei T., Brenner B. Structural features of force-generating cross-bridges. A 2D-X-ray diffraction study. Adv Exp Med Biol. 1998;453:289–296. doi: 10.1007/978-1-4684-6039-1_34. [DOI] [PubMed] [Google Scholar]
  26. Kraft T., Xu S., Brenner B., Yu L. C. The effect of thin filament activation on the attachment of weak binding cross-bridges: A two-dimensional x-ray diffraction study on single muscle fibers. Biophys J. 1999 Mar;76(3):1494–1513. doi: 10.1016/S0006-3495(99)77309-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Levine R. J., Kensler R. W., Yang Z., Stull J. T., Sweeney H. L. Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments. Biophys J. 1996 Aug;71(2):898–907. doi: 10.1016/S0006-3495(96)79293-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levine R., Weisberg A., Kulikovskaya I., McClellan G., Winegrad S. Multiple structures of thick filaments in resting cardiac muscle and their influence on cross-bridge interactions. Biophys J. 2001 Aug;81(2):1070–1082. doi: 10.1016/S0006-3495(01)75764-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Malinchik S., Xu S., Yu L. C. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle. Biophys J. 1997 Nov;73(5):2304–2312. doi: 10.1016/S0006-3495(97)78262-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McKenna N. M., Wang Y. L., Konkel M. E. Formation and movement of myosin-containing structures in living fibroblasts. J Cell Biol. 1989 Sep;109(3):1163–1172. doi: 10.1083/jcb.109.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Milligan R. A., Whittaker M., Safer D. Molecular structure of F-actin and location of surface binding sites. Nature. 1990 Nov 15;348(6298):217–221. doi: 10.1038/348217a0. [DOI] [PubMed] [Google Scholar]
  32. Papp S., Eden D., Highsmith S. Nucleotide- and temperature-induced changes in myosin subfragment-1 structure. Biochim Biophys Acta. 1992 Oct 20;1159(3):267–273. doi: 10.1016/0167-4838(92)90055-i. [DOI] [PubMed] [Google Scholar]
  33. Pate E., Franks-Skiba K., White H., Cooke R. The use of differing nucleotides to investigate cross-bridge kinetics. J Biol Chem. 1993 May 15;268(14):10046–10053. [PubMed] [Google Scholar]
  34. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  35. Rayment I., Smith C., Yount R. G. The active site of myosin. Annu Rev Physiol. 1996;58:671–702. doi: 10.1146/annurev.ph.58.030196.003323. [DOI] [PubMed] [Google Scholar]
  36. Schröder R. R., Manstein D. J., Jahn W., Holden H., Rayment I., Holmes K. C., Spudich J. A. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature. 1993 Jul 8;364(6433):171–174. doi: 10.1038/364171a0. [DOI] [PubMed] [Google Scholar]
  37. Shih W. M., Gryczynski Z., Lakowicz J. R., Spudich J. A. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell. 2000 Sep 1;102(5):683–694. doi: 10.1016/s0092-8674(00)00090-8. [DOI] [PubMed] [Google Scholar]
  38. Squire J. M., Podolsky R. J., Barry J. S., Yu L. C., Brenner B. X-ray diffraction testing for weak-binding crossbridges in relaxed bony fish muscle fibres at low ionic strength. J Struct Biol. 1991 Dec;107(3):221–226. doi: 10.1016/1047-8477(91)90047-z. [DOI] [PubMed] [Google Scholar]
  39. Taylor E. W. Actomyosin ATPase mechanism and muscle contraction. Prog Clin Biol Res. 1989;315:9–14. [PubMed] [Google Scholar]
  40. Taylor E. W. Transient phase of adenosine triphosphate hydrolysis by myosin, heavy meromyosin, and subfragment 1. Biochemistry. 1977 Feb 22;16(4):732–739. doi: 10.1021/bi00623a027. [DOI] [PubMed] [Google Scholar]
  41. Tsaturyan A. K., Bershitsky S. Y., Burns R., Ferenczi M. A. Structural changes in the actin-myosin cross-bridges associated with force generation induced by temperature jump in permeabilized frog muscle fibers. Biophys J. 1999 Jul;77(1):354–372. doi: 10.1016/S0006-3495(99)76895-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wakabayashi T., Akiba T., Hirose K., Tomioka A., Tokunaga M., Suzuki M., Toyoshima C., Sutoh K., Yamamoto K., Matsumoto T. Temperature-induced change of thick filament and location of the functional sites of myosin. Adv Exp Med Biol. 1988;226:39–48. [PubMed] [Google Scholar]
  43. White H. D., Belknap B., Jiang W. Kinetics of binding and hydrolysis of a series of nucleoside triphosphates by actomyosin-S1. Relationship between solution rate constants and properties of muscle fibers. J Biol Chem. 1993 May 15;268(14):10039–10045. [PubMed] [Google Scholar]
  44. White H. D., Belknap B., Webb M. R. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry. 1997 Sep 30;36(39):11828–11836. doi: 10.1021/bi970540h. [DOI] [PubMed] [Google Scholar]
  45. Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
  46. Xiao M., Li H., Snyder G. E., Cooke R., Yount R. G., Selvin P. R. Conformational changes between the active-site and regulatory light chain of myosin as determined by luminescence resonance energy transfer: the effect of nucleotides and actin. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15309–15314. doi: 10.1073/pnas.95.26.15309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Xie L., Li W. X., Barnett V. A., Schoenberg M. Graphical evaluation of alkylation of myosin's SH1 and SH2: the N-phenylmaleimide reaction. Biophys J. 1997 Feb;72(2 Pt 1):858–865. doi: 10.1016/s0006-3495(97)78720-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Xie L., Li W. X., Rhodes T., White H., Schoenberg M. Transient kinetic analysis of N-phenylmaleimide-reacted myosin subfragment-1. Biochemistry. 1999 May 4;38(18):5925–5931. doi: 10.1021/bi981778o. [DOI] [PubMed] [Google Scholar]
  49. Xu S. G., Kress M., Huxley H. E. X-ray diffraction studies of the structural state of crossbridges in skinned frog sartorius muscle at low ionic strength. J Muscle Res Cell Motil. 1987 Feb;8(1):39–54. doi: 10.1007/BF01767263. [DOI] [PubMed] [Google Scholar]
  50. Xu S., Gu J., Rhodes T., Belknap B., Rosenbaum G., Offer G., White H., Yu L. C. The M.ADP.Pi state is required for helical order in the thick filaments of skeletal muscle. Biophys J. 1999 Nov;77(5):2665–2676. doi: 10.1016/s0006-3495(99)77101-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Xu S., Yu L. C., Schoenberg M. Behavior of N-phenylmaleimide-reacted muscle fibers in magnesium-free rigor solution. Biophys J. 1998 Mar;74(3):1110–1114. doi: 10.1016/S0006-3495(98)77829-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES