Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2134–2147. doi: 10.1016/S0006-3495(02)75560-4

The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules.

Josh E Baker 1, Christine Brosseau 1, Peteranne B Joel 1, David M Warshaw 1
PMCID: PMC1302007  PMID: 11916869

Abstract

To better understand how skeletal muscle myosin molecules move actin filaments, we determine the motion-generating biochemistry of a single myosin molecule and study how it scales with the motion-generating biochemistry of an ensemble of myosin molecules. First, by measuring the effects of various ligands (ATP, ADP, and P(i)) on event lifetimes, tau(on), in a laser trap, we determine the biochemical kinetics underlying the stepwise movement of an actin filament generated by a single myosin molecule. Next, by measuring the effects of these same ligands on actin velocities, V, in an in vitro motility assay, we determine the biochemistry underlying the continuous movement of an actin filament generated by an ensemble of myosin molecules. The observed effects of P(i) on single molecule mechanochemistry indicate that motion generation by a single myosin molecule is closely associated with actin-induced P(i) dissociation. We obtain additional evidence for this relationship by measuring changes in single molecule mechanochemistry caused by a smooth muscle HMM mutation that results in a reduced P(i)-release rate. In contrast, we observe that motion generation by an ensemble of myosin molecules is limited by ATP-induced actin dissociation (i.e., V varies as 1/tau(on)) at low [ATP], but deviates from this relationship at high [ATP]. The single-molecule data uniquely provide a direct measure of the fundamental mechanochemistry of the actomyosin ATPase reaction under a minimal load and serve as a clear basis for a model of ensemble motility in which actin-attached myosin molecules impose a load.

Full Text

The Full Text of this article is available as a PDF (415.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anson M., Geeves M. A., Kurzawa S. E., Manstein D. J. Myosin motors with artificial lever arms. EMBO J. 1996 Nov 15;15(22):6069–6074. [PMC free article] [PubMed] [Google Scholar]
  2. Baker J. E., Brust-Mascher I., Ramachandran S., LaConte L. E., Thomas D. D. A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2944–2949. doi: 10.1073/pnas.95.6.2944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker J. E., Thomas D. D. A thermodynamic muscle model and a chemical basis for A.V. Hill's muscle equation. J Muscle Res Cell Motil. 2000 May;21(4):335–344. doi: 10.1023/a:1005615925390. [DOI] [PubMed] [Google Scholar]
  4. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooke R. Actomyosin interaction in striated muscle. Physiol Rev. 1997 Jul;77(3):671–697. doi: 10.1152/physrev.1997.77.3.671. [DOI] [PubMed] [Google Scholar]
  6. Cooke R., Bialek W. Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophys J. 1979 Nov;28(2):241–258. doi: 10.1016/S0006-3495(79)85174-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper W. C., Chrin L. R., Berger C. L. Detection of fluorescently labeled actin-bound cross-bridges in actively contracting myofibrils. Biophys J. 2000 Mar;78(3):1449–1457. doi: 10.1016/S0006-3495(00)76698-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol. 1992;451:247–278. doi: 10.1113/jphysiol.1992.sp019163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dantzig J. A., Hibberd M. G., Trentham D. R., Goldman Y. E. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J Physiol. 1991 Jan;432:639–680. doi: 10.1113/jphysiol.1991.sp018405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  11. Dupuis D. E., Guilford W. H., Wu J., Warshaw D. M. Actin filament mechanics in the laser trap. J Muscle Res Cell Motil. 1997 Feb;18(1):17–30. doi: 10.1023/a:1018672631256. [DOI] [PubMed] [Google Scholar]
  12. Eisenberg E., Hill T. L. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
  13. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  14. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  15. Fortune N. S., Geeves M. A., Ranatunga K. W. Tension responses to rapid pressure release in glycerinated rabbit muscle fibers. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7323–7327. doi: 10.1073/pnas.88.16.7323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Geeves M. A. Dynamic interaction between actin and myosin subfragment 1 in the presence of ADP. Biochemistry. 1989 Jul 11;28(14):5864–5871. doi: 10.1021/bi00440a024. [DOI] [PubMed] [Google Scholar]
  17. Goldman Y. E. Kinetics of the actomyosin ATPase in muscle fibers. Annu Rev Physiol. 1987;49:637–654. doi: 10.1146/annurev.ph.49.030187.003225. [DOI] [PubMed] [Google Scholar]
  18. Guilford W. H., Dupuis D. E., Kennedy G., Wu J., Patlak J. B., Warshaw D. M. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J. 1997 Mar;72(3):1006–1021. doi: 10.1016/S0006-3495(97)78753-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  20. Harris D. E., Warshaw D. M. Smooth and skeletal muscle myosin both exhibit low duty cycles at zero load in vitro. J Biol Chem. 1993 Jul 15;268(20):14764–14768. [PubMed] [Google Scholar]
  21. Hill T. L. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog Biophys Mol Biol. 1974;28:267–340. doi: 10.1016/0079-6107(74)90020-0. [DOI] [PubMed] [Google Scholar]
  22. Homsher E., Wang F., Sellers J. Factors affecting filament velocity in in vitro motility assays and their relation to unloaded shortening velocity in muscle fibers. Adv Exp Med Biol. 1993;332:279–290. doi: 10.1007/978-1-4615-2872-2_27. [DOI] [PubMed] [Google Scholar]
  23. Houdusse A., Sweeney H. L. Myosin motors: missing structures and hidden springs. Curr Opin Struct Biol. 2001 Apr;11(2):182–194. doi: 10.1016/s0959-440x(00)00188-3. [DOI] [PubMed] [Google Scholar]
  24. Houdusse A., Szent-Gyorgyi A. G., Cohen C. Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11238–11243. doi: 10.1073/pnas.200376897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Howard J., Spudich J. A. Is the lever arm of myosin a molecular elastic element? Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4462–4464. [PubMed] [Google Scholar]
  26. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  27. Huxley H. E. Sliding filaments and molecular motile systems. J Biol Chem. 1990 May 25;265(15):8347–8350. [PubMed] [Google Scholar]
  28. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  29. Irving M., Piazzesi G., Lucii L., Sun Y. B., Harford J. J., Dobbie I. M., Ferenczi M. A., Reconditi M., Lombardi V. Conformation of the myosin motor during force generation in skeletal muscle. Nat Struct Biol. 2000 Jun;7(6):482–485. doi: 10.1038/75890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Irving M., St Claire Allen T., Sabido-David C., Craik J. S., Brandmeier B., Kendrick-Jones J., Corrie J. E., Trentham D. R., Goldman Y. E. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature. 1995 Jun 22;375(6533):688–691. doi: 10.1038/375688a0. [DOI] [PubMed] [Google Scholar]
  31. Ishijima A., Kojima H., Funatsu T., Tokunaga M., Higuchi H., Tanaka H., Yanagida T. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell. 1998 Jan 23;92(2):161–171. doi: 10.1016/s0092-8674(00)80911-3. [DOI] [PubMed] [Google Scholar]
  32. Joel P. B., Trybus K. M., Sweeney H. L. Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation. J Biol Chem. 2000 Oct 20;276(5):2998–3003. doi: 10.1074/jbc.M006930200. [DOI] [PubMed] [Google Scholar]
  33. Kawai M., Halvorson H. R. Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle. Biophys J. 1991 Feb;59(2):329–342. doi: 10.1016/S0006-3495(91)82227-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lauzon A. M., Tyska M. J., Rovner A. S., Freyzon Y., Warshaw D. M., Trybus K. M. A 7-amino-acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap. J Muscle Res Cell Motil. 1998 Nov;19(8):825–837. doi: 10.1023/a:1005489501357. [DOI] [PubMed] [Google Scholar]
  35. Linari M., Piazzesi G., Dobbie I., Koubassova N., Reconditi M., Narayanan T., Diat O., Irving M., Lombardi V. Interference fine structure and sarcomere length dependence of the axial x-ray pattern from active single muscle fibers. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7226–7231. doi: 10.1073/pnas.97.13.7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lu H. P., Xun L., Xie X. S. Single-molecule enzymatic dynamics. Science. 1998 Dec 4;282(5395):1877–1882. doi: 10.1126/science.282.5395.1877. [DOI] [PubMed] [Google Scholar]
  37. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  38. Marston S. B., Taylor E. W. Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. J Mol Biol. 1980 Jun 5;139(4):573–600. doi: 10.1016/0022-2836(80)90050-9. [DOI] [PubMed] [Google Scholar]
  39. Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
  40. Oiwa K., Eccleston J. F., Anson M., Kikumoto M., Davis C. T., Reid G. P., Ferenczi M. A., Corrie J. E., Yamada A., Nakayama H. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives. Biophys J. 2000 Jun;78(6):3048–3071. doi: 10.1016/S0006-3495(00)76843-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Palmiter K. A., Tyska M. J., Dupuis D. E., Alpert N. R., Warshaw D. M. Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. J Physiol. 1999 Sep 15;519(Pt 3):669–678. doi: 10.1111/j.1469-7793.1999.0669n.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Palmiter K. A., Tyska M. J., Haeberle J. R., Alpert N. R., Fananapazir L., Warshaw D. M. R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil. 2000;21(7):609–620. doi: 10.1023/a:1005678905119. [DOI] [PubMed] [Google Scholar]
  43. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
  44. Patlak J. B. Measuring kinetics of complex single ion channel data using mean-variance histograms. Biophys J. 1993 Jul;65(1):29–42. doi: 10.1016/S0006-3495(93)81041-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ranatunga K. W. Effects of inorganic phosphate on endothermic force generation in muscle. Proc Biol Sci. 1999 Jul 7;266(1426):1381–1385. doi: 10.1098/rspb.1999.0791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  47. Reedy M. K., Holmes K. C., Tregear R. T. Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature. 1965 Sep 18;207(5003):1276–1280. doi: 10.1038/2071276a0. [DOI] [PubMed] [Google Scholar]
  48. Ruff C., Furch M., Brenner B., Manstein D. J., Meyhöfer E. Single-molecule tracking of myosins with genetically engineered amplifier domains. Nat Struct Biol. 2001 Mar;8(3):226–229. doi: 10.1038/84962. [DOI] [PubMed] [Google Scholar]
  49. Siemankowski R. F., Wiseman M. O., White H. D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci U S A. 1985 Feb;82(3):658–662. doi: 10.1073/pnas.82.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sleep J. A., Hutton R. L. Exchange between inorganic phosphate and adenosine 5'-triphosphate in the medium by actomyosin subfragment 1. Biochemistry. 1980 Apr 1;19(7):1276–1283. doi: 10.1021/bi00548a002. [DOI] [PubMed] [Google Scholar]
  51. Sowerby A. J., Seehra C. K., Lee M., Bagshaw C. R. Turnover of fluorescent nucleoside triphosphates by isolated immobilized myosin filaments. Transient kinetics on the zeptomole scale. J Mol Biol. 1993 Nov 5;234(1):114–123. doi: 10.1006/jmbi.1993.1567. [DOI] [PubMed] [Google Scholar]
  52. Spudich J. A. How molecular motors work. Nature. 1994 Dec 8;372(6506):515–518. doi: 10.1038/372515a0. [DOI] [PubMed] [Google Scholar]
  53. Taylor K. A., Schmitz H., Reedy M. C., Goldman Y. E., Franzini-Armstrong C., Sasaki H., Tregear R. T., Poole K., Lucaveche C., Edwards R. J. Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell. 1999 Nov 12;99(4):421–431. doi: 10.1016/s0092-8674(00)81528-7. [DOI] [PubMed] [Google Scholar]
  54. Trybus K. M., Henry L. Monoclonal antibodies detect and stabilize conformational states of smooth muscle myosin. J Cell Biol. 1989 Dec;109(6 Pt 1):2879–2886. doi: 10.1083/jcb.109.6.2879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tyska Matthew J., Warshaw David M. The myosin power stroke. Cell Motil Cytoskeleton. 2002 Jan;51(1):1–15. doi: 10.1002/cm.10014. [DOI] [PubMed] [Google Scholar]
  56. Uyeda T. Q., Abramson P. D., Spudich J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4459–4464. doi: 10.1073/pnas.93.9.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. VanBuren P., Waller G. S., Harris D. E., Trybus K. M., Warshaw D. M., Lowey S. The essential light chain is required for full force production by skeletal muscle myosin. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12403–12407. doi: 10.1073/pnas.91.26.12403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Veigel C., Bartoo M. L., White D. C., Sparrow J. C., Molloy J. E. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J. 1998 Sep;75(3):1424–1438. doi: 10.1016/S0006-3495(98)74061-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Walker J. W., Lu Z., Moss R. L. Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle. J Biol Chem. 1992 Feb 5;267(4):2459–2466. [PubMed] [Google Scholar]
  60. Walker M., Zhang X. Z., Jiang W., Trinick J., White H. D. Observation of transient disorder during myosin subfragment-1 binding to actin by stopped-flow fluorescence and millisecond time resolution electron cryomicroscopy: evidence that the start of the crossbridge power stroke in muscle has variable geometry. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):465–470. doi: 10.1073/pnas.96.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Warshaw D. M., Desrosiers J. M., Work S. S., Trybus K. M. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol. 1990 Aug;111(2):453–463. doi: 10.1083/jcb.111.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Warshaw D. M., Guilford W. H., Freyzon Y., Krementsova E., Palmiter K. A., Tyska M. J., Baker J. E., Trybus K. M. The light chain binding domain of expressed smooth muscle heavy meromyosin acts as a mechanical lever. J Biol Chem. 2000 Nov 24;275(47):37167–37172. doi: 10.1074/jbc.M006438200. [DOI] [PubMed] [Google Scholar]
  63. Warshaw D. M., Hayes E., Gaffney D., Lauzon A. M., Wu J., Kennedy G., Trybus K., Lowey S., Berger C. Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8034–8039. doi: 10.1073/pnas.95.14.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Weiss S., Rossi R., Pellegrino M. A., Bottinelli R., Geeves M. A. Differing ADP release rates from myosin heavy chain isoforms define the shortening velocity of skeletal muscle fibers. J Biol Chem. 2001 Oct 5;276(49):45902–45908. doi: 10.1074/jbc.M107434200. [DOI] [PubMed] [Google Scholar]
  65. White H. D., Taylor E. W. Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry. 1976 Dec 28;15(26):5818–5826. doi: 10.1021/bi00671a020. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES