Abstract
Nucleotide binding to RecA results in either the high-DNA affinity form (Adenosine 5'-triphosphate (ATP)-bound) or the more inactive protein conformation associated with a lower affinity for DNA (Adenosine 5'-diphosphate (ADP)-bound). Many of the key structural differences between the RecA-ATP and RecA-ADP bound forms have yet to be elucidated. We have used caged-nucleotides and difference FTIR in efforts to obtain a comprehensive understanding of the molecular changes induced by nucleotide binding to RecA. The photochemical release of nucleotides (ADP and ATP) from biologically inactive precursors was used to initiate nucleotide binding to RecA. Here we present ATP hydrolysis assays and fluorescence studies suggesting that the caged nucleotides do not interact with RecA before photochemical release. Furthermore, we now compare difference spectra obtained in H2O and D2O as our first attempt at identifying the origin of the vibrations influenced by nucleotide binding. The infrared data suggest that unique alpha-helical, beta structures, and side chain rearrangements are associated with the high- and low-DNA affinity forms of RecA. Difference spectra obtained over time isolate contributions arising from perturbations in the nucleotide phosphates and have provided further information about the protein structural changes involved in nucleotide binding and the allosteric regulation of RecA.
Full Text
The Full Text of this article is available as a PDF (292.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allin C., Gerwert K. Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy. Biochemistry. 2001 Mar 13;40(10):3037–3046. doi: 10.1021/bi0017024. [DOI] [PubMed] [Google Scholar]
- Barth A., Kreutz W., Mäntele W. Molecular changes in the sarcoplasmic reticulum calcium ATPase during catalytic activity. A Fourier transform infrared (FTIR) study using photolysis of caged ATP to trigger the reaction cycle. FEBS Lett. 1990 Dec 17;277(1-2):147–150. doi: 10.1016/0014-5793(90)80830-c. [DOI] [PubMed] [Google Scholar]
- Barth A., Mäntele W., Kreutz W. Infrared spectroscopic signals arising from ligand binding and conformational changes in the catalytic cycle of sarcoplasmic reticulum calcium ATPase. Biochim Biophys Acta. 1991 Mar 1;1057(1):115–123. doi: 10.1016/s0005-2728(05)80091-x. [DOI] [PubMed] [Google Scholar]
- Brendel V., Brocchieri L., Sandler S. J., Clark A. J., Karlin S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J Mol Evol. 1997 May;44(5):528–541. doi: 10.1007/pl00006177. [DOI] [PubMed] [Google Scholar]
- Brenner S. L., Zlotnick A., Griffith J. D. RecA protein self-assembly. Multiple discrete aggregation states. J Mol Biol. 1988 Dec 20;204(4):959–972. doi: 10.1016/0022-2836(88)90055-1. [DOI] [PubMed] [Google Scholar]
- Brenner S. L., Zlotnick A., Stafford W. F., 3rd RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA. J Mol Biol. 1990 Dec 20;216(4):949–964. doi: 10.1016/S0022-2836(99)80013-8. [DOI] [PubMed] [Google Scholar]
- Budzynski D. M., Gao X., Benight A. S. Isolation, characterization, and magnesium-induced self-association kinetics of discrete aggregates of RecA protein from Escherichia coli. Biopolymers. 1996 Apr;38(4):471–491. doi: 10.1002/(sici)1097-0282(199604)38:4<471::aid-bip4>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
- Cepus V., Scheidig A. J., Goody R. S., Gerwert K. Time-resolved FTIR studies of the GTPase reaction of H-ras p21 reveal a key role for the beta-phosphate. Biochemistry. 1998 Jul 14;37(28):10263–10271. doi: 10.1021/bi973183j. [DOI] [PubMed] [Google Scholar]
- Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
- Dollinger G., Eisenstein L., Lin S. L., Nakanishi K., Termini J. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Biochemistry. 1986 Oct 21;25(21):6524–6533. doi: 10.1021/bi00369a028. [DOI] [PubMed] [Google Scholar]
- Du X., Frei H., Kim S. H. The mechanism of GTP hydrolysis by Ras probed by Fourier transform infrared spectroscopy. J Biol Chem. 2000 Mar 24;275(12):8492–8500. doi: 10.1074/jbc.275.12.8492. [DOI] [PubMed] [Google Scholar]
- Eldin S., Forget A. L., Lindenmuth D. M., Logan K. M., Knight K. L. Mutations in the N-terminal region of RecA that disrupt the stability of free protein oligomers but not RecA-DNA complexes. J Mol Biol. 2000 May 26;299(1):91–101. doi: 10.1006/jmbi.2000.3721. [DOI] [PubMed] [Google Scholar]
- Ellouze C., Takahashi M., Wittung P., Mortensen K., Schnarr M., Nordén B. Evidence for elongation of the helical pitch of the RecA filament upon ATP and ADP binding using small-angle neutron scattering. Eur J Biochem. 1995 Oct 15;233(2):579–583. doi: 10.1111/j.1432-1033.1995.579_2.x. [DOI] [PubMed] [Google Scholar]
- Hörtnagel K., Voloshin O. N., Kinal H. H., Ma N., Schaffer-Judge C., Camerini-Otero R. D. Saturation mutagenesis of the E. coli RecA loop L2 homologous DNA pairing region reveals residues essential for recombination and recombinational repair. J Mol Biol. 1999 Mar 5;286(4):1097–1106. doi: 10.1006/jmbi.1998.2515. [DOI] [PubMed] [Google Scholar]
- Jackson M., Mantsch H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol. 1995;30(2):95–120. doi: 10.3109/10409239509085140. [DOI] [PubMed] [Google Scholar]
- Kelley De Zutter J., Forget A. L., Logan K. M., Knight K. L. Phe217 regulates the transfer of allosteric information across the subunit interface of the RecA protein filament. Structure. 2001 Jan 10;9(1):47–55. doi: 10.1016/s0969-2126(00)00552-9. [DOI] [PubMed] [Google Scholar]
- Kelley J. A., Knight K. L. Allosteric regulation of RecA protein function is mediated by Gln194. J Biol Chem. 1997 Oct 10;272(41):25778–25782. doi: 10.1074/jbc.272.41.25778. [DOI] [PubMed] [Google Scholar]
- Kim S. K., Nordén B., Takahashi M. Role of DNA intercalators in the binding of RecA to double-stranded DNA. J Biol Chem. 1993 Jul 15;268(20):14799–14804. [PubMed] [Google Scholar]
- Kim S., Liang J., Barry B. A. Chemical complementation identifies a proton acceptor for redox-active tyrosine D in photosystem II. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14406–14411. doi: 10.1073/pnas.94.26.14406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kowalczykowski S. C., Krupp R. A. DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3478–3482. doi: 10.1073/pnas.92.8.3478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. W., Cox M. M. Inhibition of recA protein promoted ATP hydrolysis. 1. ATP gamma S and ADP are antagonistic inhibitors. Biochemistry. 1990 Aug 21;29(33):7666–7676. doi: 10.1021/bi00485a016. [DOI] [PubMed] [Google Scholar]
- Menetski J. P., Kowalczykowski S. C. Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J Mol Biol. 1985 Jan 20;181(2):281–295. doi: 10.1016/0022-2836(85)90092-0. [DOI] [PubMed] [Google Scholar]
- Mikawa T., Masui R., Kuramitsu S. RecA protein has extremely high cooperativity for substrate in its ATPase activity. J Biochem. 1998 Mar;123(3):450–457. doi: 10.1093/oxfordjournals.jbchem.a021958. [DOI] [PubMed] [Google Scholar]
- Morimatsu K., Horii T., Takahashi M. Interaction of Tyr103 and Tyr264 of the RecA protein with DNA and nucleotide cofactors. Fluorescence study of engineered proteins. Eur J Biochem. 1995 Mar 15;228(3):779–785. doi: 10.1111/j.1432-1033.1995.tb20323.x. [DOI] [PubMed] [Google Scholar]
- Pugh B. F., Cox M. M. High salt activation of recA protein ATPase in the absence of DNA. J Biol Chem. 1988 Jan 5;263(1):76–83. [PubMed] [Google Scholar]
- Raimbault C., Besson F., Buchet R. Conformational changes of arginine kinase induced by photochemical release of nucleotides from caged nucleotides--an infrared difference-spectroscopy investigation. Eur J Biochem. 1997 Mar 1;244(2):343–351. doi: 10.1111/j.1432-1033.1997.00343.x. [DOI] [PubMed] [Google Scholar]
- Rehrauer W. M., Kowalczykowski S. C. Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation. J Biol Chem. 1993 Jan 15;268(2):1292–1297. [PubMed] [Google Scholar]
- Roca A. I., Cox M. M. RecA protein: structure, function, and role in recombinational DNA repair. Prog Nucleic Acid Res Mol Biol. 1997;56:129–223. doi: 10.1016/s0079-6603(08)61005-3. [DOI] [PubMed] [Google Scholar]
- Roca A. I., Cox M. M. The RecA protein: structure and function. Crit Rev Biochem Mol Biol. 1990;25(6):415–456. doi: 10.3109/10409239009090617. [DOI] [PubMed] [Google Scholar]
- Shan Q., Cox M. M., Inman R. B. DNA strand exchange promoted by RecA K72R. Two reaction phases with different Mg2+ requirements. J Biol Chem. 1996 Mar 8;271(10):5712–5724. doi: 10.1074/jbc.271.10.5712. [DOI] [PubMed] [Google Scholar]
- Stole E., Bryant F. R. Introduction of a tryptophan reporter group into loop 1 of the recA protein. Examination of the conformational states of the recA-ssDNA complex by fluorescence spectroscopy. J Biol Chem. 1994 Mar 18;269(11):7919–7925. [PubMed] [Google Scholar]
- Stole E., Bryant F. R. Reengineering the nucleotide cofactor specificity of the RecA protein by mutation of aspartic acid 100. J Biol Chem. 1996 Aug 2;271(31):18326–18328. doi: 10.1074/jbc.271.31.18326. [DOI] [PubMed] [Google Scholar]
- Story R. M., Steitz T. A. Structure of the recA protein-ADP complex. Nature. 1992 Jan 23;355(6358):374–376. doi: 10.1038/355374a0. [DOI] [PubMed] [Google Scholar]
- Story R. M., Weber I. T., Steitz T. A. The structure of the E. coli recA protein monomer and polymer. Nature. 1992 Jan 23;355(6358):318–325. doi: 10.1038/355318a0. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Maraboeuf F., Nordén B. Locations of functional domains in the RecA protein. Overlap of domains and regulation of activities. Eur J Biochem. 1996 Nov 15;242(1):20–28. doi: 10.1111/j.1432-1033.1996.0020r.x. [DOI] [PubMed] [Google Scholar]
- Venyaminov SYu, Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers. 1990;30(13-14):1243–1257. doi: 10.1002/bip.360301309. [DOI] [PubMed] [Google Scholar]
- Venyaminov SYu, Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in alpha-, beta-, and random coil conformations. Biopolymers. 1990;30(13-14):1259–1271. doi: 10.1002/bip.360301310. [DOI] [PubMed] [Google Scholar]
- Voloshin O. N., Wang L., Camerini-Otero R. D. The homologous pairing domain of RecA also mediates the allosteric regulation of DNA binding and ATP hydrolysis: a remarkable concentration of functional residues. J Mol Biol. 2000 Nov 10;303(5):709–720. doi: 10.1006/jmbi.2000.4163. [DOI] [PubMed] [Google Scholar]
- Wittung P., Nordén B., Takahashi M. Secondary structure of RecA in solution. The effects of cofactor, DNA and ionic conditions. Eur J Biochem. 1995 Feb 15;228(1):149–154. doi: 10.1111/j.1432-1033.1995.tb20243.x. [DOI] [PubMed] [Google Scholar]
- Yu X., Egelman E. H. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J Mol Biol. 1992 Sep 5;227(1):334–346. doi: 10.1016/0022-2836(92)90702-l. [DOI] [PubMed] [Google Scholar]
- el-Mahdaoui L., Tajmir-Riahi H. A. A comparative study of ATP and GTP complexation with trivalent Al, Ga and Fe cations. Determination of cation binding site and nucleotide conformation by FTIR difference spectroscopy. J Biomol Struct Dyn. 1995 Aug;13(1):69–86. doi: 10.1080/07391102.1995.10508822. [DOI] [PubMed] [Google Scholar]
- von Germar F., Barth A., Mäntele W. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy. Biophys J. 2000 Mar;78(3):1531–1540. doi: 10.1016/S0006-3495(00)76705-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Germar F., Galán A., Llorca O., Carrascosa J. L., Valpuesta J. M., Mäntele W., Muga A. Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy. J Biol Chem. 1999 Feb 26;274(9):5508–5513. doi: 10.1074/jbc.274.9.5508. [DOI] [PubMed] [Google Scholar]