Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2211–2223. doi: 10.1016/S0006-3495(02)75567-7

Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.

Hayden Huang 1, Chen Y Dong 1, Hyuk-Sang Kwon 1, Jason D Sutin 1, Roger D Kamm 1, Peter T C So 1
PMCID: PMC1302014  PMID: 11916876

Abstract

The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bausch A. R., Möller W., Sackmann E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J. 1999 Jan;76(1 Pt 1):573–579. doi: 10.1016/S0006-3495(99)77225-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bausch A. R., Ziemann F., Boulbitch A. A., Jacobson K., Sackmann E. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J. 1998 Oct;75(4):2038–2049. doi: 10.1016/S0006-3495(98)77646-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block S. M., Goldstein L. S., Schnapp B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 1990 Nov 22;348(6299):348–352. doi: 10.1038/348348a0. [DOI] [PubMed] [Google Scholar]
  4. Bojanowski K., Maniotis A. J., Plisov S., Larsen A. K., Ingber D. E. DNA topoisomerase II can drive changes in higher order chromosome architecture without enzymatically modifying DNA. J Cell Biochem. 1998 May 1;69(2):127–142. doi: 10.1002/(sici)1097-4644(19980501)69:2<127::aid-jcb4>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  5. Brown T. D., Bottlang M., Pedersen D. R., Banes A. J. Loading paradigms--intentional and unintentional--for cell culture mechanostimulus. Am J Med Sci. 1998 Sep;316(3):162–168. doi: 10.1097/00000441-199809000-00003. [DOI] [PubMed] [Google Scholar]
  6. Burger E. H., Klein-Nulend J. Microgravity and bone cell mechanosensitivity. Bone. 1998 May;22(5 Suppl):127S–130S. doi: 10.1016/s8756-3282(98)00010-6. [DOI] [PubMed] [Google Scholar]
  7. Chaqour B., Howard P. S., Macarak E. J. Identification of stretch-responsive genes in pulmonary artery smooth muscle cells by a two arbitrary primer-based mRNA differential display approach. Mol Cell Biochem. 1999 Jul;197(1-2):87–96. doi: 10.1023/a:1006966530553. [DOI] [PubMed] [Google Scholar]
  8. Chiu J. J., Wung B. S., Hsieh H. J., Lo L. W., Wang D. L. Nitric oxide regulates shear stress-induced early growth response-1. Expression via the extracellular signal-regulated kinase pathway in endothelial cells. Circ Res. 1999 Aug 6;85(3):238–246. doi: 10.1161/01.res.85.3.238. [DOI] [PubMed] [Google Scholar]
  9. Choquet D., Felsenfeld D. P., Sheetz M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 1997 Jan 10;88(1):39–48. doi: 10.1016/s0092-8674(00)81856-5. [DOI] [PubMed] [Google Scholar]
  10. Davies P. F., Barbee K. A., Volin M. V., Robotewskyj A., Chen J., Joseph L., Griem M. L., Wernick M. N., Jacobs E., Polacek D. C. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol. 1997;59:527–549. doi: 10.1146/annurev.physiol.59.1.527. [DOI] [PubMed] [Google Scholar]
  11. Davies P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995 Jul;75(3):519–560. doi: 10.1152/physrev.1995.75.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davies P. F., Polacek D. C., Handen J. S., Helmke B. P., DePaola N. A spatial approach to transcriptional profiling: mechanotransduction and the focal origin of atherosclerosis. Trends Biotechnol. 1999 Sep;17(9):347–351. doi: 10.1016/s0167-7799(99)01348-7. [DOI] [PubMed] [Google Scholar]
  13. Davies P. F., Robotewskyj A., Griem M. L. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest. 1994 May;93(5):2031–2038. doi: 10.1172/JCI117197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Girard P. R., Nerem R. M. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J Cell Physiol. 1995 Apr;163(1):179–193. doi: 10.1002/jcp.1041630121. [DOI] [PubMed] [Google Scholar]
  15. Glogauer M., Arora P., Yao G., Sokholov I., Ferrier J., McCulloch C. A. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci. 1997 Jan;110(Pt 1):11–21. doi: 10.1242/jcs.110.1.11. [DOI] [PubMed] [Google Scholar]
  16. Helmke B. P., Goldman R. D., Davies P. F. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res. 2000 Apr 14;86(7):745–752. doi: 10.1161/01.res.86.7.745. [DOI] [PubMed] [Google Scholar]
  17. Helmke B. P., Thakker D. B., Goldman R. D., Davies P. F. Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys J. 2001 Jan;80(1):184–194. doi: 10.1016/S0006-3495(01)76006-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hering T. M. Regulation of chondrocyte gene expression. Front Biosci. 1999 Oct 15;4:D743–D761. doi: 10.2741/hering. [DOI] [PubMed] [Google Scholar]
  19. Hochmuth R. M. Micropipette aspiration of living cells. J Biomech. 2000 Jan;33(1):15–22. doi: 10.1016/s0021-9290(99)00175-x. [DOI] [PubMed] [Google Scholar]
  20. Hu H., Sachs F. Stretch-activated ion channels in the heart. J Mol Cell Cardiol. 1997 Jun;29(6):1511–1523. doi: 10.1006/jmcc.1997.0392. [DOI] [PubMed] [Google Scholar]
  21. Ingber D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci. 1993 Mar;104(Pt 3):613–627. doi: 10.1242/jcs.104.3.613. [DOI] [PubMed] [Google Scholar]
  22. Ingber D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–599. doi: 10.1146/annurev.physiol.59.1.575. [DOI] [PubMed] [Google Scholar]
  23. Kanda K., Matsuda T., Oka T. Mechanical stress induced cellular orientation and phenotypic modulation of 3-D cultured smooth muscle cells. ASAIO J. 1993 Jul-Sep;39(3):M686–M690. [PubMed] [Google Scholar]
  24. Khachigian L. M., Anderson K. R., Halnon N. J., Gimbrone M. A., Jr, Resnick N., Collins T. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler Thromb Vasc Biol. 1997 Oct;17(10):2280–2286. doi: 10.1161/01.atv.17.10.2280. [DOI] [PubMed] [Google Scholar]
  25. Kuo S. C., Sheetz M. P. Force of single kinesin molecules measured with optical tweezers. Science. 1993 Apr 9;260(5105):232–234. doi: 10.1126/science.8469975. [DOI] [PubMed] [Google Scholar]
  26. Liu M., Tanswell A. K., Post M. Mechanical force-induced signal transduction in lung cells. Am J Physiol. 1999 Oct;277(4 Pt 1):L667–L683. doi: 10.1152/ajplung.1999.277.4.L667. [DOI] [PubMed] [Google Scholar]
  27. Lundberg M. S., Sadhu D. N., Grumman V. E., Chilian W. M., Ramos K. S. Actin isoform and alpha 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch. In Vitro Cell Dev Biol Anim. 1995 Sep;31(8):595–600. doi: 10.1007/BF02634312. [DOI] [PubMed] [Google Scholar]
  28. Lyall F., Deehan M. R., Greer I. A., Boswell F., Brown W. C., McInnes G. T. Mechanical stretch increases proto-oncogene expression and phosphoinositide turnover in vascular smooth muscle cells. J Hypertens. 1994 Oct;12(10):1139–1145. [PubMed] [Google Scholar]
  29. Malek A. M., Izumo S. Control of endothelial cell gene expression by flow. J Biomech. 1995 Dec;28(12):1515–1528. doi: 10.1016/0021-9290(95)00099-2. [DOI] [PubMed] [Google Scholar]
  30. Maniotis A. J., Chen C. S., Ingber D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):849–854. doi: 10.1073/pnas.94.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mathur A. B., Truskey G. A., Reichert W. M. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J. 2000 Apr;78(4):1725–1735. doi: 10.1016/s0006-3495(00)76724-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mourgeon E., Xu J., Tanswell A. K., Liu M., Post M. Mechanical strain-induced posttranscriptional regulation of fibronectin production in fetal lung cells. Am J Physiol. 1999 Jul;277(1 Pt 1):L142–L149. doi: 10.1152/ajplung.1999.277.1.L142. [DOI] [PubMed] [Google Scholar]
  33. Noubhani A. M., Sakr S., Denis M. H., Delrot S. Transcriptional and post-translational control of the plant plasma membrane H(+)-ATPase by mechanical treatments. Biochim Biophys Acta. 1996 Jun 11;1281(2):213–219. doi: 10.1016/0005-2736(96)00017-x. [DOI] [PubMed] [Google Scholar]
  34. Parsons M., Kessler E., Laurent G. J., Brown R. A., Bishop J. E. Mechanical load enhances procollagen processing in dermal fibroblasts by regulating levels of procollagen C-proteinase. Exp Cell Res. 1999 Nov 1;252(2):319–331. doi: 10.1006/excr.1999.4618. [DOI] [PubMed] [Google Scholar]
  35. Petersen N. O., McConnaughey W. B., Elson E. L. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5327–5331. doi: 10.1073/pnas.79.17.5327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pommerenke H., Schreiber E., Dürr F., Nebe B., Hahnel C., Möller W., Rychly J. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol. 1996 Jun;70(2):157–164. [PubMed] [Google Scholar]
  37. Reusch P., Wagdy H., Reusch R., Wilson E., Ives H. E. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ Res. 1996 Nov;79(5):1046–1053. doi: 10.1161/01.res.79.5.1046. [DOI] [PubMed] [Google Scholar]
  38. Rotsch C., Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000 Jan;78(1):520–535. doi: 10.1016/S0006-3495(00)76614-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sackin H. Stretch-activated ion channels. Kidney Int. 1995 Oct;48(4):1134–1147. doi: 10.1038/ki.1995.397. [DOI] [PubMed] [Google Scholar]
  40. Satcher R. L., Jr, Dewey C. F., Jr Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J. 1996 Jul;71(1):109–118. doi: 10.1016/S0006-3495(96)79206-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Satcher R., Dewey C. F., Jr, Hartwig J. H. Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow. Microcirculation. 1997 Dec;4(4):439–453. doi: 10.3109/10739689709146808. [DOI] [PubMed] [Google Scholar]
  42. So P. T., König K., Berland K., Dong C. Y., French T., Bühler C., Ragan T., Gratton E. New time-resolved techniques in two-photon microscopy. Cell Mol Biol (Noisy-le-grand) 1998 Jul;44(5):771–793. [PubMed] [Google Scholar]
  43. Songu-Mize E., Liu X., Stones J. E., Hymel L. J. Regulation of Na+,K+-ATPase alpha-subunit expression by mechanical strain in aortic smooth muscle cells. Hypertension. 1996 Mar;27(3 Pt 2):827–832. doi: 10.1161/01.hyp.27.3.827. [DOI] [PubMed] [Google Scholar]
  44. Stamenović D., Coughlin M. F. A quantitative model of cellular elasticity based on tensegrity. J Biomech Eng. 2000 Feb;122(1):39–43. doi: 10.1115/1.429631. [DOI] [PubMed] [Google Scholar]
  45. Stamenović D., Coughlin M. F. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. J Theor Biol. 1999 Nov 7;201(1):63–74. doi: 10.1006/jtbi.1999.1014. [DOI] [PubMed] [Google Scholar]
  46. Thoumine O., Ott A., Cardoso O., Meister J. J. Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J Biochem Biophys Methods. 1999 Feb 25;39(1-2):47–62. doi: 10.1016/s0165-022x(98)00052-9. [DOI] [PubMed] [Google Scholar]
  47. Wagner C. T., Durante W., Christodoulides N., Hellums J. D., Schafer A. I. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. J Clin Invest. 1997 Aug 1;100(3):589–596. doi: 10.1172/JCI119569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  49. Wang N., Ingber D. E. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J. 1994 Jun;66(6):2181–2189. doi: 10.1016/S0006-3495(94)81014-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wilson E., Mai Q., Sudhir K., Weiss R. H., Ives H. E. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol. 1993 Nov;123(3):741–747. doi: 10.1083/jcb.123.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wu Z., Wong K., Glogauer M., Ellen R. P., McCulloch C. A. Regulation of stretch-activated intracellular calcium transients by actin filaments. Biochem Biophys Res Commun. 1999 Aug 2;261(2):419–425. doi: 10.1006/bbrc.1999.1057. [DOI] [PubMed] [Google Scholar]
  52. Yamada S., Wirtz D., Kuo S. C. Mechanics of living cells measured by laser tracking microrheology. Biophys J. 2000 Apr;78(4):1736–1747. doi: 10.1016/S0006-3495(00)76725-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES