Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2224–2231. doi: 10.1016/S0006-3495(02)75568-9

Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence.

Guenther Leitz 1, Erik Fällman 1, Simon Tuck 1, Ove Axner 1
PMCID: PMC1302015  PMID: 11916877

Abstract

Optical tweezers have emerged as a powerful technique for micromanipulation of living cells. Although the technique often has been claimed to be nonintrusive, evidence has appeared that this is not always the case. This work presents evidence that near-infrared continuous-wave laser light from optical tweezers can produce stress in Caenorhabditis elegans. A transgenic strain of C. elegans, carrying an integrated heat-shock-responsive reporter gene, has been exposed to laser light under a variety of illumination conditions. It was found that gene expression was most often induced by light of 760 nm, and least by 810 nm. The stress response increased with laser power and irradiation time. At 810 nm, significant gene expression could be observed at 360 mW of illumination, which is more than one order of magnitude above that normally used in optical tweezers. In the 700-760-nm range, the results show that the stress response is caused by photochemical processes, whereas at 810 nm, it mainly has a photothermal origin. These results give further evidence that the 700-760-nm wavelength region is unsuitable for optical tweezers and suggest that work at 810 nm at normal laser powers does not cause stress at the cellular level.

Full Text

The Full Text of this article is available as a PDF (89.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ananthan J., Goldberg A. L., Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science. 1986 Apr 25;232(4749):522–524. doi: 10.1126/science.3083508. [DOI] [PubMed] [Google Scholar]
  2. Ashkin A., Dziedzic J. M., Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987 Dec 24;330(6150):769–771. doi: 10.1038/330769a0. [DOI] [PubMed] [Google Scholar]
  3. Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4853–4860. doi: 10.1073/pnas.94.10.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berns M. W., Aist J. R., Wright W. H., Liang H. Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Exp Cell Res. 1992 Feb;198(2):375–378. doi: 10.1016/0014-4827(92)90395-o. [DOI] [PubMed] [Google Scholar]
  5. Berns M. W., Tadir Y., Liang H., Tromberg B. Laser scissors and tweezers. Methods Cell Biol. 1998;55:71–98. doi: 10.1016/s0091-679x(08)60403-3. [DOI] [PubMed] [Google Scholar]
  6. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Candido E. P., Jones D., Dixon D. K., Graham R. W., Russnak R. H., Kay R. J. Structure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegans. Genome. 1989;31(2):690–697. doi: 10.1139/g89-126. [DOI] [PubMed] [Google Scholar]
  8. Candido E. P., Jones D. Transgenic Caenorhabditis elegans strains as biosensors. Trends Biotechnol. 1996 Apr;14(4):125–129. doi: 10.1016/0167-7799(96)10016-0. [DOI] [PubMed] [Google Scholar]
  9. Cotto J. J., Morimoto R. I. Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp. 1999;64:105–118. [PubMed] [Google Scholar]
  10. Daniells C., Duce I., Thomas D., Sewell P., Tattersall J., de Pomerai D. Transgenic nematodes as biomonitors of microwave-induced stress. Mutat Res. 1998 Mar 13;399(1):55–64. doi: 10.1016/s0027-5107(97)00266-2. [DOI] [PubMed] [Google Scholar]
  11. Feder M. E., Hofmann G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61:243–282. doi: 10.1146/annurev.physiol.61.1.243. [DOI] [PubMed] [Google Scholar]
  12. Fire A. Histochemical techniques for locating Escherichia coli beta-galactosidase activity in transgenic organisms. Genet Anal Tech Appl. 1992 Oct-Dec;9(5-6):151–158. doi: 10.1016/1050-3862(92)90042-4. [DOI] [PubMed] [Google Scholar]
  13. Greulich K. O., Pilarczyk G. Laser tweezers and optical microsurgery in cellular and molecular biology. Working principles and selected applications. Cell Mol Biol (Noisy-le-grand) 1998 Jul;44(5):701–710. [PubMed] [Google Scholar]
  14. Guven K., Power R. S., Avramides S., Allender R., de Pomerai D. I. The toxicity of dithiocarbamate fungicides to soil nematodes, assessed using a stress-inducible transgenic strain of Caenorhabditis elegans. J Biochem Mol Toxicol. 1999;13(6):324–333. doi: 10.1002/(sici)1099-0461(1999)13:6<324::aid-jbt6>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  15. Hightower L. E. Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol. 1980 Mar;102(3):407–427. doi: 10.1002/jcp.1041020315. [DOI] [PubMed] [Google Scholar]
  16. Jones D., Candido E. P. Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematode Caenorhabditis elegans: relationship to the cellular stress response. J Exp Zool. 1999 Jul 1;284(2):147–157. doi: 10.1002/(sici)1097-010x(19990701)284:2<147::aid-jez4>3.3.co;2-q. [DOI] [PubMed] [Google Scholar]
  17. König K., Tadir Y., Patrizio P., Berns M. W., Tromberg B. J. Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa. Hum Reprod. 1996 Oct;11(10):2162–2164. doi: 10.1093/oxfordjournals.humrep.a019069. [DOI] [PubMed] [Google Scholar]
  18. Lewis J. A., Fleming J. T. Basic culture methods. Methods Cell Biol. 1995;48:3–29. [PubMed] [Google Scholar]
  19. Liang H., Vu K. T., Trang T. C., Shin D., Lee Y. E., Nguyen D. C., Tromberg B., Berns M. W. Giant cell formation in cells exposed to 740 nm and 760 nm optical traps. Lasers Surg Med. 1997;21(2):159–165. doi: 10.1002/(sici)1096-9101(1997)21:2<159::aid-lsm7>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  20. Link C. D., Cypser J. R., Johnson C. J., Johnson T. E. Direct observation of stress response in Caenorhabditis elegans using a reporter transgene. Cell Stress Chaperones. 1999 Dec;4(4):235–242. doi: 10.1379/1466-1268(1999)004<0235:doosri>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu Y., Cheng D. K., Sonek G. J., Berns M. W., Chapman C. F., Tromberg B. J. Evidence for localized cell heating induced by infrared optical tweezers. Biophys J. 1995 May;68(5):2137–2144. doi: 10.1016/S0006-3495(95)80396-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mori I., Ohshima Y. Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Bioessays. 1997 Dec;19(12):1055–1064. doi: 10.1002/bies.950191204. [DOI] [PubMed] [Google Scholar]
  23. Neuman K. C., Chadd E. H., Liou G. F., Bergman K., Block S. M. Characterization of photodamage to Escherichia coli in optical traps. Biophys J. 1999 Nov;77(5):2856–2863. doi: 10.1016/S0006-3495(99)77117-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parsell D. A., Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–496. doi: 10.1146/annurev.ge.27.120193.002253. [DOI] [PubMed] [Google Scholar]
  25. Russnak R. H., Jones D., Candido E. P. Cloning and analysis of cDNA sequences coding for two 16 kilodalton heat shock proteins (hsps) in Caenorhabditis elegans: homology with the small hsps of Drosophila. Nucleic Acids Res. 1983 May 25;11(10):3187–3205. doi: 10.1093/nar/11.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Snutch T. P., Baillie D. L. Alterations in the pattern of gene expression following heat shock in the nematode Caenorhabditis elegans. Can J Biochem Cell Biol. 1983 Jun;61(6):480–487. doi: 10.1139/o83-064. [DOI] [PubMed] [Google Scholar]
  27. Stringham E. G., Candido E. P. Targeted single-cell induction of gene products in Caenorhabditis elegans: a new tool for developmental studies. J Exp Zool. 1993 Jul 1;266(3):227–233. doi: 10.1002/jez.1402660309. [DOI] [PubMed] [Google Scholar]
  28. Stringham E. G., Dixon D. K., Jones D., Candido E. P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol Biol Cell. 1992 Feb;3(2):221–233. doi: 10.1091/mbc.3.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  30. Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
  31. Vorobjev I. A., Liang H., Wright W. H., Berns M. W. Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges. Biophys J. 1993 Feb;64(2):533–538. doi: 10.1016/S0006-3495(93)81398-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES