Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2232–2243. doi: 10.1016/S0006-3495(02)75569-0

A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles.

Susana A Sanchez 1, Luis A Bagatolli 1, Enrico Gratton 1, Theodore L Hazlett 1
PMCID: PMC1302016  PMID: 11916878

Abstract

We describe the interaction of Crotalus atrox-secreted phospholipase A2 (sPLA2) with giant unilamellar vesicles (GUVs) composed of single and binary phospholipid mixtures visualized through two-photon excitation fluorescent microscopy. The GUV lipid compositions that we examined included 1-palmitoyl-2-oleoyl-phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) (above their gel-liquid crystal transition temperatures) and two well characterized lipid mixtures, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):DMPC (7:3) and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)/1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC) (1:1) equilibrated at their phase-coexistence temperature regime. The membrane fluorescence probes, 6-lauroyl-2-(dimethylamino) napthalene, 6-propionyl-2-(dimethylamino) naphthalene, and rhodamine-phosphatidylethanolamine, were used to assess the state of the membrane and specifically mark the phospholipid domains. Independent of their lipid composition, all GUVs were reduced in size as sPLA2-dependent lipid hydrolysis proceeded. The binding of sPLA2 was monitored using a fluorescein-sPLA2 conjugate. The sPLA2 was observed to associate with the entire surface of the liquid phase in the single phospholipid GUVs. In the mixed-lipid GUV's, at temperatures promoting domain coexistence, a preferential binding of the enzyme to the liquid regions was also found. The lipid phase of the GUV protein binding region was verified by the introduction of 6-propionyl-2-(dimethylamino) naphthalene, which partitions quickly into the lipid fluid phase. Preferential hydrolysis of the liquid domains supported the conclusions based on the binding studies. sPLA2 hydrolyzes the liquid domains in the binary lipid mixtures DLPC:DAPC and DMPC:DMPE, indicating that the solid-phase packing of DAPC and DMPE interferes with sPLA2 binding, irrespective of the phospholipid headgroup. These studies emphasize the importance of lateral packing of the lipids in C. atrox sPLA2 enzymatic hydrolysis of a membrane surface.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anel A., Richieri G. V., Kleinfeld A. M. Membrane partition of fatty acids and inhibition of T cell function. Biochemistry. 1993 Jan 19;32(2):530–536. doi: 10.1021/bi00053a018. [DOI] [PubMed] [Google Scholar]
  2. Bagatolli L. A., Gratton E. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Biophys J. 2000 Jul;79(1):434–447. doi: 10.1016/S0006-3495(00)76305-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bagatolli L. A., Gratton E. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J. 2000 Jan;78(1):290–305. doi: 10.1016/S0006-3495(00)76592-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bagatolli L. A., Gratton E. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J. 1999 Oct;77(4):2090–2101. doi: 10.1016/S0006-3495(99)77050-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell J. D., Biltonen R. L. The temporal sequence of events in the activation of phospholipase A2 by lipid vesicles. Studies with the monomeric enzyme from Agkistrodon piscivorus piscivorus. J Biol Chem. 1989 Jul 25;264(21):12194–12200. [PubMed] [Google Scholar]
  6. Bell J. D., Burnside M., Owen J. A., Royall M. L., Baker M. L. Relationships between bilayer structure and phospholipase A2 activity: interactions among temperature, diacylglycerol, lysolecithin, palmitic acid, and dipalmitoylphosphatidylcholine. Biochemistry. 1996 Apr 16;35(15):4945–4955. doi: 10.1021/bi952274i. [DOI] [PubMed] [Google Scholar]
  7. Bent E. D., Bell J. D. Quantification of the interactions among fatty acid, lysophosphatidylcholine, calcium, dimyristoylphosphatidylcholine vesicles, and phospholipase A2. Biochim Biophys Acta. 1995 Feb 9;1254(3):349–360. doi: 10.1016/0005-2760(94)00201-9. [DOI] [PubMed] [Google Scholar]
  8. Brown S. D., Baker B. L., Bell J. D. Quantification of the interaction of lysolecithin with phosphatidylcholine vesicles using bovine serum albumin: relevance to the activation of phospholipase A2. Biochim Biophys Acta. 1993 May 20;1168(1):13–22. doi: 10.1016/0005-2760(93)90260-g. [DOI] [PubMed] [Google Scholar]
  9. Brunie S., Bolin J., Gewirth D., Sigler P. B. The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center. J Biol Chem. 1985 Aug 15;260(17):9742–9749. [PubMed] [Google Scholar]
  10. Burack W. R., Dibble A. R., Allietta M. M., Biltonen R. L. Changes in vesicle morphology induced by lateral phase separation modulate phospholipase A2 activity. Biochemistry. 1997 Aug 26;36(34):10551–10557. doi: 10.1021/bi970509f. [DOI] [PubMed] [Google Scholar]
  11. Burack W. R., Dibble A. R., Biltonen R. L. The relationship between compositional phase separation and vesicle morphology: implications for the regulation of phospholipase A2 by membrane structure. Chem Phys Lipids. 1997 Nov 19;90(1-2):87–95. doi: 10.1016/s0009-3084(97)00084-4. [DOI] [PubMed] [Google Scholar]
  12. Burack W. R., Gadd M. E., Biltonen R. L. Modulation of phospholipase A2: identification of an inactive membrane-bound state. Biochemistry. 1995 Nov 14;34(45):14819–14828. doi: 10.1021/bi00045a024. [DOI] [PubMed] [Google Scholar]
  13. Burack W. R., Yuan Q., Biltonen R. L. Role of lateral phase separation in the modulation of phospholipase A2 activity. Biochemistry. 1993 Jan 19;32(2):583–589. doi: 10.1021/bi00053a025. [DOI] [PubMed] [Google Scholar]
  14. Darke P. L., Jarvis A. A., Deems R. A., Dennis E. A. Further characterization and N-terminal sequence of cobra venom phospholipase A2. Biochim Biophys Acta. 1980 Nov 20;626(1):154–161. doi: 10.1016/0005-2795(80)90206-8. [DOI] [PubMed] [Google Scholar]
  15. Dennis E. A. Kinetic dependence of phospholipase A 2 activity on the detergent Triton X-100. J Lipid Res. 1973 Mar;14(2):152–159. [PubMed] [Google Scholar]
  16. Gabriel N. E., Roberts M. F. Short-chain lecithin/long-chain phospholipid unilamellar vesicles: asymmetry, dynamics, and enzymatic hydrolysis of the short-chain component. Biochemistry. 1987 May 5;26(9):2432–2440. doi: 10.1021/bi00383a006. [DOI] [PubMed] [Google Scholar]
  17. Gadd M. E., Biltonen R. L. Characterization of the interaction of phospholipase A(2) with phosphatidylcholine-phosphatidylglycerol mixed lipids. Biochemistry. 2000 Aug 15;39(32):9623–9631. doi: 10.1021/bi000322f. [DOI] [PubMed] [Google Scholar]
  18. Grainger D. W., Reichert A., Ringsdorf H., Salesse C. Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochim Biophys Acta. 1990 Apr 30;1023(3):365–379. doi: 10.1016/0005-2736(90)90128-b. [DOI] [PubMed] [Google Scholar]
  19. Grandbois M., Clausen-Schaumann H., Gaub H. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys J. 1998 May;74(5):2398–2404. doi: 10.1016/S0006-3495(98)77948-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gul S., Smith A. D. Haemolysis of intact human erythrocytes by purified cobra venom phospholipase A2 in the presence of albumin and Ca2+. Biochim Biophys Acta. 1974 Nov 15;367(3):271–281. doi: 10.1016/0005-2736(74)90084-4. [DOI] [PubMed] [Google Scholar]
  21. Hachimori Y., Wells M. A., Hanahan D. J. Observations on the phospholipase A 2 of Crotalus atrox. Molecular weight and other properties. Biochemistry. 1971 Oct 26;10(22):4084–4089. doi: 10.1021/bi00798a012. [DOI] [PubMed] [Google Scholar]
  22. Heinrikson R. L., Krueger E. T., Keim P. S. Amino acid sequence of phospholipase A2-alpha from the venom of Crotalus adamanteus. A new classification of phospholipases A2 based upon structural determinants. J Biol Chem. 1977 Jul 25;252(14):4913–4921. [PubMed] [Google Scholar]
  23. Henshaw J. B., Olsen C. A., Farnbach A. R., Nielson K. H., Bell J. D. Definition of the specific roles of lysolecithin and palmitic acid in altering the susceptibility of dipalmitoylphosphatidylcholine bilayers to phospholipase A2. Biochemistry. 1998 Jul 28;37(30):10709–10721. doi: 10.1021/bi9728809. [DOI] [PubMed] [Google Scholar]
  24. Holopainen J. M., Angelova M. I., Kinnunen P. K. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J. 2000 Feb;78(2):830–838. doi: 10.1016/S0006-3495(00)76640-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jablonski E. G., Brand L., Roseman S. Sugar transport by the bacterial phosphotransferase system. Preparation of a fluorescein derivative of the glucose-specific phosphocarrier protein IIIGlc and its binding to the phosphocarrier protein HPr. J Biol Chem. 1983 Aug 25;258(16):9690–9699. [PubMed] [Google Scholar]
  26. Jain M. K., Ranadive G., Yu B. Z., Verheij H. M. Interfacial catalysis by phospholipase A2: monomeric enzyme is fully catalytically active at the bilayer interface. Biochemistry. 1991 Jul 23;30(29):7330–7340. doi: 10.1021/bi00243a038. [DOI] [PubMed] [Google Scholar]
  27. Jain M. K., van Echteld C. J., Ramirez F., de Gier J., de Haas G. H., van Deenen L. L. Association of lysophosphatidylcholine with fatty acids in aqueous phase to form bilayers. Nature. 1980 Apr 3;284(5755):486–487. doi: 10.1038/284486a0. [DOI] [PubMed] [Google Scholar]
  28. Kensil C. R., Dennis E. A. Action of cobra venom phospholipase A2 on the gel and liquid crystalline states of dimyristoyl and dipalmitoyl phosphatidylcholine vesicles. J Biol Chem. 1979 Jul 10;254(13):5843–5848. [PubMed] [Google Scholar]
  29. Krasnowska E. K., Gratton E., Parasassi T. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J. 1998 Apr;74(4):1984–1993. doi: 10.1016/S0006-3495(98)77905-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kupferberg J. P., Yokoyama S., Kézdy F. J. The kinetics of the phospholipase A2-catalyzed hydrolysis of Egg phosphatidylcholine in unilamellar vesicles. Product inhibition and its relief by serum albumin. J Biol Chem. 1981 Jun 25;256(12):6274–6281. [PubMed] [Google Scholar]
  31. Lichtenberg D., Romero G., Menashe M., Biltonen R. L. Hydrolysis of dipalmitoylphosphatidylcholine large unilamellar vesicles by porcine pancreatic phospholipase A2. J Biol Chem. 1986 Apr 25;261(12):5334–5340. [PubMed] [Google Scholar]
  32. Liu F., Chong P. L. Evidence for a regulatory role of cholesterol superlattices in the hydrolytic activity of secretory phospholipase A2 in lipid membranes. Biochemistry. 1999 Mar 30;38(13):3867–3873. doi: 10.1021/bi982693q. [DOI] [PubMed] [Google Scholar]
  33. Maloney K. M., Grainger D. W. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface. Chem Phys Lipids. 1993 Apr;65(1):31–42. doi: 10.1016/0009-3084(93)90079-i. [DOI] [PubMed] [Google Scholar]
  34. Menger F. M., Keiper J. S. Chemistry and physics of giant vesicles as biomembrane models. Curr Opin Chem Biol. 1998 Dec;2(6):726–732. doi: 10.1016/s1367-5931(98)80110-5. [DOI] [PubMed] [Google Scholar]
  35. Op den Kamp J. A., Kauerz M. T., van Deenen L. L. Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states. Biochim Biophys Acta. 1975 Oct 6;406(2):169–177. doi: 10.1016/0005-2736(75)90001-2. [DOI] [PubMed] [Google Scholar]
  36. Parasassi T., De Stasio G., Ravagnan G., Rusch R. M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991 Jul;60(1):179–189. doi: 10.1016/S0006-3495(91)82041-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 1990 Jun;57(6):1179–1186. doi: 10.1016/S0006-3495(90)82637-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reichert A., Ringsdorf H., Wagenknecht A. Spontaneous domain formation of phospholipase A2 at interfaces: fluorescence microscopy of the interaction of phospholipase A2 with mixed monolayers of lecithin, lysolecithin and fatty acid. Biochim Biophys Acta. 1992 Apr 29;1106(1):178–188. doi: 10.1016/0005-2736(92)90237-g. [DOI] [PubMed] [Google Scholar]
  39. Sanchez S. A., Chen Y., Müller J. D., Gratton E., Hazlett T. L. Solution and interface aggregation states of Crotalus atrox venom phospholipase A2 by two-photon excitation fluorescence correlation spectroscopy. Biochemistry. 2001 Jun 12;40(23):6903–6911. doi: 10.1021/bi001599i. [DOI] [PubMed] [Google Scholar]
  40. Speijer H., Giesen P. L., Zwaal R. F., Hack C. E., Hermens W. T. Critical micelle concentrations and stirring are rate limiting in the loss of lipid mass during membrane degradation by phospholipase A2. Biophys J. 1996 May;70(5):2239–2247. doi: 10.1016/S0006-3495(96)79789-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vogel C. W., Plückthun A., Müller-Eberhard H. J., Dennis E. A. Hemolytic assay for venom phospholipase A2. Anal Biochem. 1981 Dec;118(2):262–268. doi: 10.1016/0003-2697(81)90189-5. [DOI] [PubMed] [Google Scholar]
  42. Welches W., Reardon I., Heinrikson R. L. An examination of structural interactions presumed to be of importance in the stabilization of phospholipase A2 dimers based upon comparative protein sequence analysis of a monomeric and dimeric enzyme from the venom of Agkistrodon p. piscivorus. J Protein Chem. 1993 Apr;12(2):187–193. doi: 10.1007/BF01026040. [DOI] [PubMed] [Google Scholar]
  43. Wick R., Angelova M. I., Walde P., Luisi P. L. Microinjection into giant vesicles and light microscopy investigation of enzyme-mediated vesicle transformations. Chem Biol. 1996 Feb;3(2):105–111. doi: 10.1016/s1074-5521(96)90286-0. [DOI] [PubMed] [Google Scholar]
  44. Wilson H. A., Waldrip J. B., Nielson K. H., Judd A. M., Han S. K., Cho W., Sims P. J., Bell J. D. Mechanisms by which elevated intracellular calcium induces S49 cell membranes to become susceptible to the action of secretory phospholipase A2. J Biol Chem. 1999 Apr 23;274(17):11494–11504. doi: 10.1074/jbc.274.17.11494. [DOI] [PubMed] [Google Scholar]
  45. Yu B. Z., Berg O. G., Jain M. K. The divalent cation is obligatory for the binding of ligands to the catalytic site of secreted phospholipase A2. Biochemistry. 1993 Jun 29;32(25):6485–6492. doi: 10.1021/bi00076a024. [DOI] [PubMed] [Google Scholar]
  46. Yu B. Z., Rogers J., Nicol G. R., Theopold K. H., Seshadri K., Vishweshwara S., Jain M. K. Catalytic significance of the specificity of divalent cations as KS* and kcat* cofactors for secreted phospholipase A2. Biochemistry. 1998 Sep 8;37(36):12576–12587. doi: 10.1021/bi9728607. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES