Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2265–2274. doi: 10.1016/S0006-3495(02)75572-0

A new deformation model of hard alpha-keratin fibers at the nanometer scale: implications for hard alpha-keratin intermediate filament mechanical properties.

L Kreplak 1, A Franbourg 1, F Briki 1, F Leroy 1, D Dallé 1, J Doucet 1
PMCID: PMC1302019  PMID: 11916881

Abstract

The mechanical behavior of human hair fibers is determined by the interactions between keratin proteins structured into microfibrils (hard alpha-keratin intermediate filaments), a protein sulfur-rich matrix (intermediate filaments associated proteins), and water molecules. The structure of the microfibril-matrix assembly has already been fully characterized using electron microscopy and small-angle x-ray scattering on unstressed fibers. However, these results give only a static image of this assembly. To observe and characterize the deformation of the microfibrils and of the matrix, we have carried out time-resolved small-angle x-ray microdiffraction experiments on human hair fibers stretched at 45% relative humidity and in water. Three structural parameters were monitored and quantified: the 6.7-nm meridian arc, which is related to an axial separation between groups of molecules along the microfibrils, the microfibril's radius, and the packing distance between microfibrils. Using a surface lattice model of the microfibril, we have described its deformation as a combination of a sliding process and a molecular stretching process. The radial contraction of the matrix is also emphasized, reinforcing the hydrophilic gel nature hypothesis.

Full Text

The Full Text of this article is available as a PDF (170.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi U., Fowler W. E., Rew P., Sun T. T. The fibrillar substructure of keratin filaments unraveled. J Cell Biol. 1983 Oct;97(4):1131–1143. doi: 10.1083/jcb.97.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baltenneck F., Bernard, Garson J. C., Engström P., Riekel C., Leroy F., Franbourg A., Doucet J. Study of the keratinization process in human hair follicle by X-ray microdiffraction. Cell Mol Biol (Noisy-le-grand) 2000 Jul;46(5):1017–1024. [PubMed] [Google Scholar]
  3. Briki F., Busson B., Doucet J. Organization of microfibrils in keratin fibers studied by X-ray scattering modelling using the paracrystal concept. Biochim Biophys Acta. 1998 Dec 8;1429(1):57–68. doi: 10.1016/s0167-4838(98)00216-7. [DOI] [PubMed] [Google Scholar]
  4. Busson B., Doucet J. Distribution and interference functions for two-dimensional hexagonal paracrystals. Acta Crystallogr A. 2000 Jan;56(Pt 1):68–72. doi: 10.1107/s0108767399011174. [DOI] [PubMed] [Google Scholar]
  5. FRASER R. D., MACRAE T. P., MILLER A. THE COILED-COIL MODEL OF ALPHA-KERATIN STRUCTURE. J Mol Biol. 1964 Oct;10:147–156. doi: 10.1016/s0022-2836(64)80034-6. [DOI] [PubMed] [Google Scholar]
  6. Fraser R. D., MacRae T. P., Parry D. A., Suzuki E. Intermediate filaments in alpha-keratins. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1179–1183. doi: 10.1073/pnas.83.5.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fraser R. D., MacRae T. P., Suzuki E. Structure of the alpha-keratin microfibril. J Mol Biol. 1976 Dec;108(2):435–452. doi: 10.1016/s0022-2836(76)80129-5. [DOI] [PubMed] [Google Scholar]
  8. Hearle J. W. A critical review of the structural mechanics of wool and hair fibres. Int J Biol Macromol. 2000 Apr 12;27(2):123–138. doi: 10.1016/s0141-8130(00)00116-1. [DOI] [PubMed] [Google Scholar]
  9. Herrmann H., Aebi U. Intermediate filament assembly: fibrillogenesis is driven by decisive dimer-dimer interactions. Curr Opin Struct Biol. 1998 Apr;8(2):177–185. doi: 10.1016/s0959-440x(98)80035-3. [DOI] [PubMed] [Google Scholar]
  10. Jones L. N., Simon M., Watts N. R., Booy F. P., Steven A. C., Parry D. A. Intermediate filament structure: hard alpha-keratin. Biophys Chem. 1997 Oct;68(1-3):83–93. doi: 10.1016/s0301-4622(97)00013-6. [DOI] [PubMed] [Google Scholar]
  11. Kreplak L., Doucet J., Briki F. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers. Biopolymers. 2001 Apr 15;58(5):526–533. doi: 10.1002/1097-0282(20010415)58:5<526::AID-BIP1028>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  12. Mehrani T., Wu K. C., Morasso M. I., Bryan J. T., Marekov L. N., Parry D. A., Steinert P. M. Residues in the 1A rod domain segment and the linker L2 are required for stabilizing the A11 molecular alignment mode in keratin intermediate filaments. J Biol Chem. 2000 Oct 5;276(3):2088–2097. doi: 10.1074/jbc.M007260200. [DOI] [PubMed] [Google Scholar]
  13. Meng J. J., Khan S., Ip W. Charge interactions in the rod domain drive formation of tetramers during intermediate filament assembly. J Biol Chem. 1994 Jul 15;269(28):18679–18685. [PubMed] [Google Scholar]
  14. Milam L., Erickson H. P. Visualization of a 21-nm axial periodicity in shadowed keratin filaments and neurofilaments. J Cell Biol. 1982 Sep;94(3):592–596. doi: 10.1083/jcb.94.3.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Parry D. A. Hard alpha-keratin IF: a structural model lacking a head-to-tail molecular overlap but having hybrid features characteristic of both epidermal keratin and vimentin IF. Proteins. 1995 Jul;22(3):267–272. doi: 10.1002/prot.340220307. [DOI] [PubMed] [Google Scholar]
  16. Parry D. A., Steinert P. M. Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q Rev Biophys. 1999 May;32(2):99–187. doi: 10.1017/s0033583500003516. [DOI] [PubMed] [Google Scholar]
  17. Rohs R., Etchebest C., Lavery R. Unraveling proteins: a molecular mechanics study. Biophys J. 1999 May;76(5):2760–2768. doi: 10.1016/S0006-3495(99)77429-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steinert P. M., Marekov L. N., Fraser R. D., Parry D. A. Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly. J Mol Biol. 1993 Mar 20;230(2):436–452. doi: 10.1006/jmbi.1993.1161. [DOI] [PubMed] [Google Scholar]
  19. Wang H., Parry D. A., Jones L. N., Idler W. W., Marekov L. N., Steinert P. M. In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding. J Cell Biol. 2000 Dec 25;151(7):1459–1468. doi: 10.1083/jcb.151.7.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilson G. A. Low-angle x-ray diffraction studies of the effect of extension on macromolecular organisation in keratin. Biochim Biophys Acta. 1972 Oct 31;278(3):440–449. doi: 10.1016/0005-2795(72)90004-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES