Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2279–2292. doi: 10.1016/S0006-3495(02)75574-4

Thermodynamic assessment of the stability of thrombin receptor antagonistic peptides in hydrophobic environments.

Reinhard I Boysen 1, Agnes J O Jong 1, Milton T W Hearn 1
PMCID: PMC1302021  PMID: 11964219

Abstract

In this paper, a general procedure is described to determine thermodynamic parameters associated with the interaction of thrombin receptor antagonistic peptides (TRAPs) with immobilized nonpolar ligands. The results show that these interactions were associated with nonlinear van't Hoff dependencies over a wide temperature range. Moreover, changes in relevant thermodynamic parameters, namely the changes in Gibbs free energy of interaction, DeltaG(0)assoc, enthalpy of interaction, DeltaH(0)assoc, entropy of interaction, DeltaS(0)assoc, and heat capacity, DeltaC(0)p, have been related to the structural properties of these TRAP analogs. The implications of these investigations for the design of thrombin receptor agonists/antagonists with structures stabilized by intramolecular hydrophobic interactions are discussed.

Full Text

The Full Text of this article is available as a PDF (260.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beyermann M., Fechner K., Furkert J., Krause E., Bienert M. A single-point slight alteration set as a tool for structure-activity relationship studies of ovine corticotropin releasing factor. J Med Chem. 1996 Aug 16;39(17):3324–3330. doi: 10.1021/jm960116z. [DOI] [PubMed] [Google Scholar]
  2. Borea P. A., Dalpiaz A., Varani K., Gilli P., Gilli G. Can thermodynamic measurements of receptor binding yield information on drug affinity and efficacy? Biochem Pharmacol. 2000 Dec 1;60(11):1549–1556. doi: 10.1016/s0006-2952(00)00368-3. [DOI] [PubMed] [Google Scholar]
  3. Bornstein P., Balian G. Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 1977;47:132–145. doi: 10.1016/0076-6879(77)47016-2. [DOI] [PubMed] [Google Scholar]
  4. Boysen R. I., Hearn M. T. Direct characterisation by electrospray ionisation mass spectroscopy of mercuro-polypeptide complexes after deprotection of acetamidomethyl groups from protected cysteine residues of synthetic polypeptides. J Biochem Biophys Methods. 2000 Sep 11;45(2):157–168. doi: 10.1016/s0165-022x(00)00108-1. [DOI] [PubMed] [Google Scholar]
  5. Boysen R. I., Wang Y., Keah H. H., Hearn M. T. Observations on the origin of the non-linear van't Hoff behaviour of polypeptides in hydrophobic environments. Biophys Chem. 1999 Mar 29;77(2-3):79–97. doi: 10.1016/s0301-4622(99)00002-2. [DOI] [PubMed] [Google Scholar]
  6. Boysen Reinhard I., Jong Agnes J. O., Wilce Jackie A., King Glenn F., Hearn Milton T. W. Role of interfacial hydrophobic residues in the stabilization of the leucine zipper structures of the transcription factors c-Fos and c-Jun. J Biol Chem. 2001 Oct 15;277(1):23–31. doi: 10.1074/jbc.M104556200. [DOI] [PubMed] [Google Scholar]
  7. Ceruso M. A., McComsey D. F., Leo G. C., Andrade-Gordon P., Addo M. F., Scarborough R. M., Oksenberg D., Maryanoff B. E. Thrombin receptor-activating peptides (TRAPs): investigation of bioactive conformations via structure-activity, spectroscopic, and computational studies. Bioorg Med Chem. 1999 Nov;7(11):2353–2371. doi: 10.1016/s0968-0896(99)00180-7. [DOI] [PubMed] [Google Scholar]
  8. Dunitz J. D. Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem Biol. 1995 Nov;2(11):709–712. doi: 10.1016/1074-5521(95)90097-7. [DOI] [PubMed] [Google Scholar]
  9. Fields G. B., Noble R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 1990 Mar;35(3):161–214. doi: 10.1111/j.1399-3011.1990.tb00939.x. [DOI] [PubMed] [Google Scholar]
  10. Fontenot J. D., Ball J. M., Miller M. A., David C. M., Montelaro R. C. A survey of potential problems and quality control in peptide synthesis by the fluorenylmethoxycarbonyl procedure. Pept Res. 1991 Jan-Feb;4(1):19–25. [PubMed] [Google Scholar]
  11. Haidacher D., Vailaya A., Horváth C. Temperature effects in hydrophobic interaction chromatography. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2290–2295. doi: 10.1073/pnas.93.6.2290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hearn M. T., Zhao G. Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands. Anal Chem. 1999 Nov 1;71(21):4874–4885. doi: 10.1021/ac990028x. [DOI] [PubMed] [Google Scholar]
  13. Houston M. E., Jr, Kondejewski L. H., Karunaratne D. N., Gough M., Fidai S., Hodges R. S., Hancock R. E. Influence of preformed alpha-helix and alpha-helix induction on the activity of cationic antimicrobial peptides. J Pept Res. 1998 Aug;52(2):81–88. doi: 10.1111/j.1399-3011.1998.tb01361.x. [DOI] [PubMed] [Google Scholar]
  14. Häckel M., Hedwig G. R., Hin H. J. The partial molar heat capacity and volume of the peptide backbone group of proteins in aqueous solution. Biophys Chem. 1998 Jul 13;73(1-2):163–177. doi: 10.1016/s0301-4622(98)00160-4. [DOI] [PubMed] [Google Scholar]
  15. Häckel M., Hinz H. J., Hedwig G. R. A new set of peptide-based group heat capacities for use in protein stability calculations. J Mol Biol. 1999 Aug 6;291(1):197–213. doi: 10.1006/jmbi.1999.2952. [DOI] [PubMed] [Google Scholar]
  16. Kahn M. L., Zheng Y. W., Huang W., Bigornia V., Zeng D., Moff S., Farese R. V., Jr, Tam C., Coughlin S. R. A dual thrombin receptor system for platelet activation. Nature. 1998 Aug 13;394(6694):690–694. doi: 10.1038/29325. [DOI] [PubMed] [Google Scholar]
  17. Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970 Apr;34(2):595–598. doi: 10.1016/0003-2697(70)90146-6. [DOI] [PubMed] [Google Scholar]
  18. Keah H. H., Kecorius E., Hearn M. T. Direct synthesis and characterisation of multi-dendritic peptides for use as immunogens. J Pept Res. 1998 Jan;51(1):2–8. doi: 10.1111/j.1399-3011.1998.tb00410.x. [DOI] [PubMed] [Google Scholar]
  19. Kondejewski L. H., Jelokhani-Niaraki M., Farmer S. W., Lix B., Kay C. M., Sykes B. D., Hancock R. E., Hodges R. S. Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem. 1999 May 7;274(19):13181–13192. doi: 10.1074/jbc.274.19.13181. [DOI] [PubMed] [Google Scholar]
  20. Lin F. Y., Chen W. Y., Hearn M. T. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein. Anal Chem. 2001 Aug 15;73(16):3875–3883. doi: 10.1021/ac0102056. [DOI] [PubMed] [Google Scholar]
  21. Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
  22. Makhatadze G. I., Privalov P. L. Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J Mol Biol. 1990 May 20;213(2):375–384. doi: 10.1016/S0022-2836(05)80197-4. [DOI] [PubMed] [Google Scholar]
  23. Mari B., Imbert V., Belhacene N., Far D. F., Peyron J. F., Pouysségur J., Van Obberghen-Schilling E., Rossi B., Auberger P. Thrombin and thrombin receptor agonist peptide induce early events of T cell activation and synergize with TCR cross-linking for CD69 expression and interleukin 2 production. J Biol Chem. 1994 Mar 18;269(11):8517–8523. [PubMed] [Google Scholar]
  24. Melander W. R., Corradini D., Horváth C. Salt-mediated retention of proteins in hydrophobic-interaction chromatography. Application of solvophobic theory. J Chromatogr. 1984 Dec 28;317:67–85. doi: 10.1016/s0021-9673(01)91648-6. [DOI] [PubMed] [Google Scholar]
  25. Murphy K. P., Gill S. J. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol. 1991 Dec 5;222(3):699–709. doi: 10.1016/0022-2836(91)90506-2. [DOI] [PubMed] [Google Scholar]
  26. Murphy K. P. Predicting binding energetics from structure: looking beyond DeltaG degrees. Med Res Rev. 1999 Jul;19(4):333–339. doi: 10.1002/(sici)1098-1128(199907)19:4<333::aid-med6>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  27. Nose T., Fujita T., Nakajima M., Inoue Y., Costa T., Shimohigashi Y. Interaction mode of the phe-phenyl group of thrombin receptor-tethered ligand SFLLRNP in receptor activation. J Biochem. 1998 Aug;124(2):354–358. doi: 10.1093/oxfordjournals.jbchem.a022119. [DOI] [PubMed] [Google Scholar]
  28. Purcell A. W., Zhao G. L., Aguilar M. I., Hearn M. T. Comparison between the isocratic and gradient retention behaviour of polypeptides in reversed-phase liquid chromatographic environments. J Chromatogr A. 1999 Aug 6;852(1):43–57. doi: 10.1016/s0021-9673(99)00440-9. [DOI] [PubMed] [Google Scholar]
  29. Ross P. D., Rekharsky M. V. Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys J. 1996 Oct;71(4):2144–2154. doi: 10.1016/S0006-3495(96)79415-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seiler S. M., Peluso M., Tuttle J. G., Pryor K., Klimas C., Matsueda G. R., Bernatowicz M. S. Thrombin receptor activation by thrombin and receptor-derived peptides in platelet and CHRF-288 cell membranes: receptor-stimulated GTPase and evaluation of agonists and partial agonists. Mol Pharmacol. 1996 Jan;49(1):190–197. [PubMed] [Google Scholar]
  31. Spassov V. Z., Ladenstein R., Karshikoff A. D. Optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins. Protein Sci. 1997 Jun;6(6):1190–1196. doi: 10.1002/pro.5560060607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Troyer D., Padilla R., Smith T., Kreisberg J., Glass W., 2nd Stimulation of the thrombin receptor of human glomerular mesangial cells by Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-Tyr-Glu-Pro-Phe peptide. J Biol Chem. 1992 Oct 5;267(28):20126–20131. [PubMed] [Google Scholar]
  33. Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
  34. Weiland G. A., Minneman K. P., Molinoff P. B. Fundamental difference between the molecular interactions of agonists and antagonists with the beta-adrenergic receptor. Nature. 1979 Sep 13;281(5727):114–117. doi: 10.1038/281114a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES