Abstract
Using a model for catalysis of a dynamic equilibrium, the role of constraint in catalysis is quantified. The intrinsic rigidity of proteins is shown to be insufficient to constrain the activated complexes of enzymes, irrespective of the mechanism. However, when minimization of the surface excess free energy of water surrounding a protein is considered, model proteins can be designed with regions of sufficient rigidity. Structures can be designed to focus surface tension or hydrophobic attraction as compressive stress. A monomeric structure has a limited ability to concentrate compressive stress and constrain activated complexes. Oligomeric or multidomain proteins, with domains surrounding a rigid core, have unlimited ability to concentrate stress, provided there are at least four domains. Under some circumstances, four is the optimum number, which could explain the frequency of tetrameric enzymes in nature. The minimum compressive stress in oligomers increases with the square of the radius. For tetramers of similar size to natural enzymes, this stress agrees reasonably well with that needed to constrain the activated complex. A similar principle applies to high affinity binding proteins. The models explain the trigonal pyramidal shape of fibroblast growth factor and provide a basis for interpretation of protein crystal structures.
Full Text
The Full Text of this article is available as a PDF (107.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumeister W., Barth M., Hegerl R., Guckenberger R., Hahn M., Saxton W. O. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J Mol Biol. 1986 Jan 20;187(2):241–250. doi: 10.1016/0022-2836(86)90231-7. [DOI] [PubMed] [Google Scholar]
- Colman P. M., Laver W. G., Varghese J. N., Baker A. T., Tulloch P. A., Air G. M., Webster R. G. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. 1987 Mar 26-Apr 1Nature. 326(6111):358–363. doi: 10.1038/326358a0. [DOI] [PubMed] [Google Scholar]
- Eriksson A. E., Cousens L. S., Weaver L. H., Matthews B. W. Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3441–3445. doi: 10.1073/pnas.88.8.3441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Israelachvili J., Pashley R. The hydrophobic interaction is long range, decaying exponentially with distance. Nature. 1982 Nov 25;300(5890):341–342. doi: 10.1038/300341a0. [DOI] [PubMed] [Google Scholar]
- Janin J., Wodak S. J. Structural domains in proteins and their role in the dynamics of protein function. Prog Biophys Mol Biol. 1983;42(1):21–78. doi: 10.1016/0079-6107(83)90003-2. [DOI] [PubMed] [Google Scholar]
- Ji S. Energy and negentropy in enzymic catalysis. Ann N Y Acad Sci. 1974 Feb 18;227:419–437. doi: 10.1111/j.1749-6632.1974.tb14405.x. [DOI] [PubMed] [Google Scholar]
- Kharakoz D. P. Protein compressibility, dynamics, and pressure. Biophys J. 2000 Jul;79(1):511–525. doi: 10.1016/S0006-3495(00)76313-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knowles J. R. Enzyme catalysis: not different, just better. Nature. 1991 Mar 14;350(6314):121–124. doi: 10.1038/350121a0. [DOI] [PubMed] [Google Scholar]
- Lumry R. Conformational mechanisms for free energy transduction in protein systems: old ideas and new facts. Ann N Y Acad Sci. 1974 Feb 18;227:46–73. doi: 10.1111/j.1749-6632.1974.tb14373.x. [DOI] [PubMed] [Google Scholar]
- Lumry R. Participation of water in protein reactions. Ann N Y Acad Sci. 1974 Feb 18;227:471–485. doi: 10.1111/j.1749-6632.1974.tb14409.x. [DOI] [PubMed] [Google Scholar]
- Müller D. J., Fotiadis D., Scheuring S., Müller S. A., Engel A. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys J. 1999 Feb;76(2):1101–1111. doi: 10.1016/S0006-3495(99)77275-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nugent M. A., Iozzo R. V. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000 Feb;32(2):115–120. doi: 10.1016/s1357-2725(99)00123-5. [DOI] [PubMed] [Google Scholar]
- Pellegrini L., Burke D. F., von Delft F., Mulloy B., Blundell T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000 Oct 26;407(6807):1029–1034. doi: 10.1038/35039551. [DOI] [PubMed] [Google Scholar]
- Samal S., Geckeler K. E. Unexpected solute aggregation in water on dilution. Chem Commun (Camb) 2001 Nov 7;(21):2224–2225. doi: 10.1039/b105399j. [DOI] [PubMed] [Google Scholar]
- Sharp K. A., Nicholls A., Fine R. F., Honig B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science. 1991 Apr 5;252(5002):106–109. doi: 10.1126/science.2011744. [DOI] [PubMed] [Google Scholar]
- Somero G. N., Neubauer M., Low P. S. Neutral salt effects on the velocity and activation volume of the lactate dehydrogenase reaction: evidence for enzyme hydration changes during catalysis. Arch Biochem Biophys. 1977 Jun;181(2):438–446. doi: 10.1016/0003-9861(77)90249-1. [DOI] [PubMed] [Google Scholar]
- Zhu X., Komiya H., Chirino A., Faham S., Fox G. M., Arakawa T., Hsu B. T., Rees D. C. Three-dimensional structures of acidic and basic fibroblast growth factors. Science. 1991 Jan 4;251(4989):90–93. doi: 10.1126/science.1702556. [DOI] [PubMed] [Google Scholar]