Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2326–2332. doi: 10.1016/S0006-3495(02)75578-1

Atomistic simulations of competition between substrates binding to an enzyme.

Adrian H Elcock 1
PMCID: PMC1302025  PMID: 11964223

Abstract

Although the idea that electrostatic potentials generated by enzymes can guide substrates to active sites is well established, it is not always appreciated that the same potentials can also promote the binding of molecules other than the intended substrate, with the result that such enzymes might be sensitive to the presence of competing molecules. To provide a novel means of studying such "electrostatic competition" effects, computer simulation methodology has been developed to allow the diffusion and association of many solute molecules around a single enzyme to be simulated. To demonstrate the power of the methodology, simulations have been conducted on an artificial fusion protein of citrate synthase (CS) and malate dehydrogenase (MDH) to assess the chances of oxaloacetate being channeled between the MDH and CS active sites. The simulations demonstrate that the probability of channeling is strongly dependent on the concentration of the initial substrate (malate) in the solution. In fact, the high concentrations of malate used in experiments appear high enough to abolish any channeling of oxaloacetate. The simulations provide a resolution of a serious discrepancy between previous simulations and experiments and raise important questions relating to the observability of electrostatically mediated substrate channeling in vitro and in vivo.

Full Text

The Full Text of this article is available as a PDF (369.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blacklow S. C., Raines R. T., Lim W. A., Zamore P. D., Knowles J. R. Triosephosphate isomerase catalysis is diffusion controlled. Appendix: Analysis of triose phosphate equilibria in aqueous solution by 31P NMR. Biochemistry. 1988 Feb 23;27(4):1158–1167. doi: 10.1021/bi00404a013. [DOI] [PubMed] [Google Scholar]
  2. Elcock A. H., Huber G. A., McCammon J. A. Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment. Biochemistry. 1997 Dec 23;36(51):16049–16058. doi: 10.1021/bi971709u. [DOI] [PubMed] [Google Scholar]
  3. Elcock A. H., McCammon J. A. Evidence for electrostatic channeling in a fusion protein of malate dehydrogenase and citrate synthase. Biochemistry. 1996 Oct 1;35(39):12652–12658. doi: 10.1021/bi9614747. [DOI] [PubMed] [Google Scholar]
  4. Elcock A. H., Potter M. J., Matthews D. A., Knighton D. R., McCammon J. A. Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidylate synthase. J Mol Biol. 1996 Sep 27;262(3):370–374. doi: 10.1006/jmbi.1996.0520. [DOI] [PubMed] [Google Scholar]
  5. Ellis R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol. 2001 Feb;11(1):114–119. doi: 10.1016/s0959-440x(00)00172-x. [DOI] [PubMed] [Google Scholar]
  6. Fiehn O., Kopka J., Dörmann P., Altmann T., Trethewey R. N., Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000 Nov;18(11):1157–1161. doi: 10.1038/81137. [DOI] [PubMed] [Google Scholar]
  7. Gabdoulline R. R., Wade R. C. Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. J Mol Biol. 2001 Mar 9;306(5):1139–1155. doi: 10.1006/jmbi.2000.4404. [DOI] [PubMed] [Google Scholar]
  8. Gabdoulline R. R., Wade R. C. Simulation of the diffusional association of barnase and barstar. Biophys J. 1997 May;72(5):1917–1929. doi: 10.1016/S0006-3495(97)78838-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Getzoff E. D., Cabelli D. E., Fisher C. L., Parge H. E., Viezzoli M. S., Banci L., Hallewell R. A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992 Jul 23;358(6384):347–351. doi: 10.1038/358347a0. [DOI] [PubMed] [Google Scholar]
  10. Kashiwaya Y., Sato K., Tsuchiya N., Thomas S., Fell D. A., Veech R. L., Passonneau J. V. Control of glucose utilization in working perfused rat heart. J Biol Chem. 1994 Oct 14;269(41):25502–25514. [PubMed] [Google Scholar]
  11. Knighton D. R., Kan C. C., Howland E., Janson C. A., Hostomska Z., Welsh K. M., Matthews D. A. Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat Struct Biol. 1994 Mar;1(3):186–194. doi: 10.1038/nsb0394-186. [DOI] [PubMed] [Google Scholar]
  12. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  13. Lindbladh C., Rault M., Hagglund C., Small W. C., Mosbach K., Bülow L., Evans C., Srere P. A. Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate dehydrogenase. Biochemistry. 1994 Oct 4;33(39):11692–11698. doi: 10.1021/bi00205a004. [DOI] [PubMed] [Google Scholar]
  14. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  15. Pettersson H., Olsson P., Bülow L., Pettersson G. Kinetics of the coupled reaction catalysed by a fusion protein of yeast mitochondrial malate dehydrogenase and citrate synthase. Eur J Biochem. 2000 Aug;267(16):5041–5046. doi: 10.1046/j.1432-1327.2000.01558.x. [DOI] [PubMed] [Google Scholar]
  16. Radić Z., Kirchhoff P. D., Quinn D. M., McCammon J. A., Taylor P. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin. J Biol Chem. 1997 Sep 12;272(37):23265–23277. doi: 10.1074/jbc.272.37.23265. [DOI] [PubMed] [Google Scholar]
  17. Schreiber G., Fersht A. R. Rapid, electrostatically assisted association of proteins. Nat Struct Biol. 1996 May;3(5):427–431. doi: 10.1038/nsb0596-427. [DOI] [PubMed] [Google Scholar]
  18. Shatalin K., Lebreton S., Rault-Leonardon M., Vélot C., Srere P. A. Electrostatic channeling of oxaloacetate in a fusion protein of porcine citrate synthase and porcine mitochondrial malate dehydrogenase. Biochemistry. 1999 Jan 19;38(3):881–889. doi: 10.1021/bi982195h. [DOI] [PubMed] [Google Scholar]
  19. Srivastava D. K., Bernhard S. A. Biophysical chemistry of metabolic reaction sequences in concentrated enzyme solution and in the cell. Annu Rev Biophys Biophys Chem. 1987;16:175–204. doi: 10.1146/annurev.bb.16.060187.001135. [DOI] [PubMed] [Google Scholar]
  20. Stone S. R., Dennis S., Hofsteenge J. Quantitative evaluation of the contribution of ionic interactions to the formation of the thrombin-hirudin complex. Biochemistry. 1989 Aug 22;28(17):6857–6863. doi: 10.1021/bi00443a012. [DOI] [PubMed] [Google Scholar]
  21. Sánchez R., Sali A. Advances in comparative protein-structure modelling. Curr Opin Struct Biol. 1997 Apr;7(2):206–214. doi: 10.1016/s0959-440x(97)80027-9. [DOI] [PubMed] [Google Scholar]
  22. Wade R. C. Brownian dynamics simulations of enzyme-substrate encounter. Biochem Soc Trans. 1996 Feb;24(1):254–259. doi: 10.1042/bst0240254. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES