Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2499–2503. doi: 10.1016/S0006-3495(02)75592-6

An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies.

Kevin J Hallock 1, Katherine Henzler Wildman 1, Dong-Kuk Lee 1, Ayyalusamy Ramamoorthy 1
PMCID: PMC1302039  PMID: 11964237

Abstract

Uniaxially aligned phospholipid bilayers are often used as model membranes to obtain structural details of membrane-associated molecules, such as peptides, proteins, drugs, and cholesterol. Well-aligned bilayer samples can be difficult to prepare and no universal procedure has been reported that orients all combinations of membrane-embedded components. In this study, a new method for producing mechanically aligned phospholipid bilayer samples using naphthalene, a sublimable solid, was developed. Using (31)P-NMR spectroscopy, comparison of a conventional method of preparing mechanically aligned samples with the new naphthalene procedure found that the use of naphthalene significantly enhanced the alignment of 3:1 1-palmitoyl-2-oleoyl-phosphatidylethanolamine to 1-palmitoyl-2-oleoyl-phosphatidylglycerol. The utility of the naphthalene procedure is also demonstrated on bilayers of many different compositions, including bilayers containing peptides such as pardaxin and gramicidin. These results show that the naphthalene procedure is a generally applicable method for producing mechanically aligned samples for use in NMR spectroscopy. The increase in bilayer alignment implies that this procedure will improve the sensitivity of solid-state NMR experiments, in particular those techniques that detect low-sensitivity nuclei, such as 15N and 13C.

Full Text

The Full Text of this article is available as a PDF (107.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechinger B., Zasloff M., Opella S. J. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 1993 Dec;2(12):2077–2084. doi: 10.1002/pro.5560021208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cotten M., Fu R., Cross T. A. Solid-state NMR and hydrogen-deuterium exchange in a bilayer-solubilized peptide: structural and mechanistic implications. Biophys J. 1999 Mar;76(3):1179–1189. doi: 10.1016/S0006-3495(99)77282-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Epand R. M. Lipid polymorphism and protein-lipid interactions. Biochim Biophys Acta. 1998 Nov 10;1376(3):353–368. doi: 10.1016/s0304-4157(98)00015-x. [DOI] [PubMed] [Google Scholar]
  4. Fenske D. B., Cullis P. R. Chemical exchange between lamellar and non-lamellar lipid phases. A one- and two-dimensional 31P-NMR study. Biochim Biophys Acta. 1992 Jul 27;1108(2):201–209. doi: 10.1016/0005-2736(92)90026-i. [DOI] [PubMed] [Google Scholar]
  5. Fenske D. B., Jarrell H. C. Phosphorus-31 two-dimensional solid-state exchange NMR. Application to model membrane and biological systems. Biophys J. 1991 Jan;59(1):55–69. doi: 10.1016/S0006-3495(91)82198-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gasset M., Killian J. A., Tournois H., de Kruijff B. Influence of cholesterol on gramicidin-induced HII phase formation in phosphatidylcholine model membranes. Biochim Biophys Acta. 1988 Mar 22;939(1):79–88. doi: 10.1016/0005-2736(88)90049-1. [DOI] [PubMed] [Google Scholar]
  7. Hori Y., Demura M., Niidome T., Aoyagi H., Asakura T. Orientational behavior of phospholipid membranes with mastoparan studied by 31P solid state NMR. FEBS Lett. 1999 Jul 23;455(3):228–232. doi: 10.1016/s0014-5793(99)00881-9. [DOI] [PubMed] [Google Scholar]
  8. Katsaras J. Highly aligned lipid membrane systems in the physiologically relevant "excess water" condition. Biophys J. 1997 Dec;73(6):2924–2929. doi: 10.1016/S0006-3495(97)78320-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keller S. L., Gruner S. M., Gawrisch K. Small concentrations of alamethicin induce a cubic phase in bulk phosphatidylethanolamine mixtures. Biochim Biophys Acta. 1996 Jan 31;1278(2):241–246. doi: 10.1016/0005-2736(95)00229-4. [DOI] [PubMed] [Google Scholar]
  10. Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
  11. Killian J. A., de Kruijff B. Importance of hydration for gramicidin-induced hexagonal HII phase formation in dioleoylphosphatidylcholine model membranes. Biochemistry. 1985 Dec 31;24(27):7890–7898. doi: 10.1021/bi00348a007. [DOI] [PubMed] [Google Scholar]
  12. Kovacs F. A., Denny J. K., Song Z., Quine J. R., Cross T. A. Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property. J Mol Biol. 2000 Jan 7;295(1):117–125. doi: 10.1006/jmbi.1999.3322. [DOI] [PubMed] [Google Scholar]
  13. Liu F., Lewis R. N., Hodges R. S., McElhaney R. N. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Biochemistry. 2001 Jan 23;40(3):760–768. doi: 10.1021/bi001942j. [DOI] [PubMed] [Google Scholar]
  14. Marassi F. M., Opella S. J. NMR structural studies of membrane proteins. Curr Opin Struct Biol. 1998 Oct;8(5):640–648. doi: 10.1016/s0959-440x(98)80157-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marassi F. M., Ramamoorthy A., Opella S. J. Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8551–8556. doi: 10.1073/pnas.94.16.8551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McDowell L. M., Schaefer J. High-resolution NMR of biological solids. Curr Opin Struct Biol. 1996 Oct;6(5):624–629. doi: 10.1016/s0959-440x(96)80028-5. [DOI] [PubMed] [Google Scholar]
  17. Moll F., 3rd, Cross T. A. Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D. Biophys J. 1990 Feb;57(2):351–362. doi: 10.1016/S0006-3495(90)82536-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morein S., Koeppe II R. E., Lindblom G., de Kruijff B., Killian J. A. The effect of peptide/lipid hydrophobic mismatch on the phase behavior of model membranes mimicking the lipid composition in Escherichia coli membranes. Biophys J. 2000 May;78(5):2475–2485. doi: 10.1016/s0006-3495(00)76792-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morein S., Strandberg E., Killian J. A., Persson S., Arvidson G., Koeppe R. E., 2nd, Lindblom G. Influence of membrane-spanning alpha-helical peptides on the phase behavior of the dioleoylphosphatidylcholine/water system. Biophys J. 1997 Dec;73(6):3078–3088. doi: 10.1016/S0006-3495(97)78335-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murphy O. J., 3rd, Kovacs F. A., Sicard E. L., Thompson L. K. Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor. Biochemistry. 2001 Feb 6;40(5):1358–1366. doi: 10.1021/bi0015109. [DOI] [PubMed] [Google Scholar]
  21. Nicholson L. K., Moll F., Mixon T. E., LoGrasso P. V., Lay J. C., Cross T. A. Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A'. Biochemistry. 1987 Oct 20;26(21):6621–6626. doi: 10.1021/bi00395a009. [DOI] [PubMed] [Google Scholar]
  22. Ramamoorthy A., Marassi F. M., Zasloff M., Opella S. J. Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. J Biomol NMR. 1995 Nov;6(3):329–334. doi: 10.1007/BF00197814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roux M., Nezil F. A., Monck M., Bloom M. Fragmentation of phospholipid bilayers by myelin basic protein. Biochemistry. 1994 Jan 11;33(1):307–311. doi: 10.1021/bi00167a040. [DOI] [PubMed] [Google Scholar]
  24. Shai Y., Fox J., Caratsch C., Shih Y. L., Edwards C., Lazarovici P. Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. FEBS Lett. 1988 Dec 19;242(1):161–166. doi: 10.1016/0014-5793(88)81007-x. [DOI] [PubMed] [Google Scholar]
  25. Shai Y. Pardaxin: channel formation by a shark repellant peptide from fish. Toxicology. 1994 Feb 28;87(1-3):109–129. doi: 10.1016/0300-483x(94)90157-0. [DOI] [PubMed] [Google Scholar]
  26. Smith S. O., Aschheim K., Groesbeek M. Magic angle spinning NMR spectroscopy of membrane proteins. Q Rev Biophys. 1996 Dec;29(4):395–449. doi: 10.1017/s0033583500005898. [DOI] [PubMed] [Google Scholar]
  27. Smith S. O., Jonas R., Braiman M., Bormann B. J. Structure and orientation of the transmembrane domain of glycophorin A in lipid bilayers. Biochemistry. 1994 May 24;33(20):6334–6341. doi: 10.1021/bi00186a037. [DOI] [PubMed] [Google Scholar]
  28. Webb M. S., Hui S. W., Steponkus P. L. Dehydration-induced lamellar-to-hexagonal-II phase transitions in DOPE/DOPC mixtures. Biochim Biophys Acta. 1993 Jan 18;1145(1):93–104. doi: 10.1016/0005-2736(93)90385-d. [DOI] [PubMed] [Google Scholar]
  29. Yang J., Gabrys C. M., Weliky D. P. Solid-state nuclear magnetic resonance evidence for an extended beta strand conformation of the membrane-bound HIV-1 fusion peptide. Biochemistry. 2001 Jul 10;40(27):8126–8137. doi: 10.1021/bi0100283. [DOI] [PubMed] [Google Scholar]
  30. Zhou Z., Sayer B. G., Hughes D. W., Stark R. E., Epand R. M. Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance. Biophys J. 1999 Jan;76(1 Pt 1):387–399. doi: 10.1016/S0006-3495(99)77205-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES