Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2504–2510. doi: 10.1016/S0006-3495(02)75593-8

Determination of L(alpha)-H(II) phase transition temperature for 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine.

Gilman E S Toombes 1, Adam C Finnefrock 1, Mark W Tate 1, Sol M Gruner 1
PMCID: PMC1302040  PMID: 11964238

Abstract

The thermodynamic properties of fully-hydrated lipids provide important information about the stability of membranes and the energetic interactions of lipid bilayers with membrane proteins (Nagle and Scott, Physics Today, 2:39, 1978). The lamellar/inverse hexagonal (L(alpha)-H(II)) phase transition of 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) water mixtures is a first-order transition and, therefore, at constant pressure, must have a thermodynamically well-defined equilibrium transition temperature. The observed transition temperature is known to be dependent upon the rate at which the temperature is changed, which accounts for the many different values in the literature. X-ray diffraction was used to study the phase transition of fully-hydrated DOPE to determine the rate-independent transition temperature, T(LH). Samples were heated or cooled for a range of rates, 0.212 < r < 225 degrees C/hr, and the rate-dependent apparent phase transition temperatures, T(A)(r) were determined from the x-ray data. By use of a model-free extrapolation method, the transition temperature was found to be T(LH) = 3.33 +/- 0.16 degrees C. The hysteresis, /T(A)(r) - T(LH)/, was identical for heating and cooling rates, +/-r, and varied as /r/beta for beta approximately 1/4. This unexpected power-law relationship is consistent with a previous study (Tate et al., Biochemistry, 31:1081-1092, 1992) but differs markedly from the exponential behavior of activation barrier kinetics. The methods used in this study are general and provide a simple way to determine the true mesomorphic phase transition temperatures of other lipid and lyotropic systems.

Full Text

The Full Text of this article is available as a PDF (463.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng K. H. Headgroup hydration and motional order of lipids in lamellar liquid crystalline and inverted hexagonal phases of unsaturated phosphatidylethanolamine--a time-resolved fluorescence study. Chem Phys Lipids. 1990 Mar;53(2-3):191–202. doi: 10.1016/0009-3084(90)90045-s. [DOI] [PubMed] [Google Scholar]
  2. Epand R. M., Lemay C. T. Lipid concentration affects the kinetic stability of dielaidoylphosphatidylethanolamine bilayers. Chem Phys Lipids. 1993 Dec;66(3):181–187. doi: 10.1016/0009-3084(93)90003-l. [DOI] [PubMed] [Google Scholar]
  3. Fenske D. B., Cullis P. R. Chemical exchange between lamellar and non-lamellar lipid phases. A one- and two-dimensional 31P-NMR study. Biochim Biophys Acta. 1992 Jul 27;1108(2):201–209. doi: 10.1016/0005-2736(92)90026-i. [DOI] [PubMed] [Google Scholar]
  4. Gawrisch K., Parsegian V. A., Hajduk D. A., Tate M. W., Graner S. M., Fuller N. L., Rand R. P. Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes. Biochemistry. 1992 Mar 24;31(11):2856–2864. doi: 10.1021/bi00126a003. [DOI] [PubMed] [Google Scholar]
  5. Gruner S. M., Tate M. W., Kirk G. L., So P. T., Turner D. C., Keane D. T., Tilcock C. P., Cullis P. R. X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine. Biochemistry. 1988 Apr 19;27(8):2853–2866. doi: 10.1021/bi00408a029. [DOI] [PubMed] [Google Scholar]
  6. Hazel J. R., Williams E. E. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res. 1990;29(3):167–227. doi: 10.1016/0163-7827(90)90002-3. [DOI] [PubMed] [Google Scholar]
  7. Koynova R., Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids. 1994 Jan;69(1):1–34. doi: 10.1016/0009-3084(94)90024-8. [DOI] [PubMed] [Google Scholar]
  8. Kuzmin P. I., Zimmerberg J., Chizmadzhev Y. A., Cohen F. S. A quantitative model for membrane fusion based on low-energy intermediates. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7235–7240. doi: 10.1073/pnas.121191898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Osman P., Cornell B. The effect of pulsed electric fields on the phosphorus-31 spectra of lipid bilayers. Biochim Biophys Acta. 1994 Nov 2;1195(2):197–204. doi: 10.1016/0005-2736(94)90256-9. [DOI] [PubMed] [Google Scholar]
  10. Rand R. P., Fuller N. L. Structural dimensions and their changes in a reentrant hexagonal-lamellar transition of phospholipids. Biophys J. 1994 Jun;66(6):2127–2138. doi: 10.1016/S0006-3495(94)81008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rietveld A. G., Koorengevel M. C., de Kruijff B. Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J. 1995 Nov 15;14(22):5506–5513. doi: 10.1002/j.1460-2075.1995.tb00237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sanderson P. W., Williams W. P., Cunningham B. A., Wolfe D. H., Lis L. J. The effect of ice on membrane lipid phase behaviour. Biochim Biophys Acta. 1993 Jun 5;1148(2):278–284. doi: 10.1016/0005-2736(93)90140-u. [DOI] [PubMed] [Google Scholar]
  13. Shyamsunder E., Gruner S. M., Tate M. W., Turner D. C., So P. T., Tilcock C. P. Observation of inverted cubic phase in hydrated dioleoylphosphatidylethanolamine membranes. Biochemistry. 1988 Apr 5;27(7):2332–2336. doi: 10.1021/bi00407a014. [DOI] [PubMed] [Google Scholar]
  14. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  15. Tate M. W., Shyamsunder E., Gruner S. M., D'Amico K. L. Kinetics of the lamellar-inverse hexagonal phase transition determined by time-resolved X-ray diffraction. Biochemistry. 1992 Feb 4;31(4):1081–1092. doi: 10.1021/bi00119a017. [DOI] [PubMed] [Google Scholar]
  16. Tenchov B. On the reversibility of the phase transitions in lipid-water systems. Chem Phys Lipids. 1991 Mar;57(2-3):165–177. doi: 10.1016/0009-3084(91)90074-l. [DOI] [PubMed] [Google Scholar]
  17. Tristram-Nagle S., Suter R. M., Sun W. J., Nagle J. F. Kinetics of subgel formation in DPPC: X-ray diffraction proves nucleation-growth hypothesis. Biochim Biophys Acta. 1994 Apr 20;1191(1):14–20. doi: 10.1016/0005-2736(94)90227-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES