Abstract
Some membrane peptides, such as Alamethicin, form barrel-stave aggregates with a broad probability distribution of size (number of peptides in the aggregate). This distribution has been shown to depend on the characteristics of the lipid bilayer. A mechanism for this influence is suggested, in analogy to earlier work on the effects of changes in bilayer composition on conformational equilibria in membrane proteins, that is based on coupling of shifts in the distribution of lateral pressures in the bilayer to depth-dependent changes in the lateral excluded area that accompanies the formation of an aggregate. Thermodynamic analysis is coupled with a simple geometric model of aggregates of kinked cylindrical peptides and with results of previously calculated lateral pressure distributions to predict the effects of changes in bilayer characteristics on aggregate size distributions, in qualitative agreement with experimental results.
Full Text
The Full Text of this article is available as a PDF (82.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bak M., Bywater R. P., Hohwy M., Thomsen J. K., Adelhorst K., Jakobsen H. J., Sørensen O. W., Nielsen N. C. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance. Biophys J. 2001 Sep;81(3):1684–1698. doi: 10.1016/S0006-3495(01)75822-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezrukov S. M., Rand R. P., Vodyanoy I., Parsegian V. A. Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge. Faraday Discuss. 1998;(111):173–246. doi: 10.1039/a806579i. [DOI] [PubMed] [Google Scholar]
- Biggin P. C., Breed J., Son H. S., Sansom M. S. Simulation studies of alamethicin-bilayer interactions. Biophys J. 1997 Feb;72(2 Pt 1):627–636. doi: 10.1016/s0006-3495(97)78701-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cafiso D. S. Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct. 1994;23:141–165. doi: 10.1146/annurev.bb.23.060194.001041. [DOI] [PubMed] [Google Scholar]
- Cantor R. S. Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics. Biophys J. 2001 May;80(5):2284–2297. doi: 10.1016/S0006-3495(01)76200-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantor R. S. Lipid composition and the lateral pressure profile in bilayers. Biophys J. 1999 May;76(5):2625–2639. doi: 10.1016/S0006-3495(99)77415-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantor R. S. The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids. 1999 Aug;101(1):45–56. doi: 10.1016/s0009-3084(99)00054-7. [DOI] [PubMed] [Google Scholar]
- Dan N., Safran S. A. Effect of lipid characteristics on the structure of transmembrane proteins. Biophys J. 1998 Sep;75(3):1410–1414. doi: 10.1016/S0006-3495(98)74059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
- Keller S. L., Bezrukov S. M., Gruner S. M., Tate M. W., Vodyanoy I., Parsegian V. A. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys J. 1993 Jul;65(1):23–27. doi: 10.1016/S0006-3495(93)81040-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis J. R., Cafiso D. S. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids. Biochemistry. 1999 May 4;38(18):5932–5938. doi: 10.1021/bi9828167. [DOI] [PubMed] [Google Scholar]
- Opsahl L. R., Webb W. W. Transduction of membrane tension by the ion channel alamethicin. Biophys J. 1994 Jan;66(1):71–74. doi: 10.1016/S0006-3495(94)80751-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sansom M. S. Structure and function of channel-forming peptaibols. Q Rev Biophys. 1993 Nov;26(4):365–421. doi: 10.1017/s0033583500002833. [DOI] [PubMed] [Google Scholar]
- Sansom M. S. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. doi: 10.1016/0079-6107(91)90004-c. [DOI] [PubMed] [Google Scholar]
- Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990 Feb 28;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
- Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiang T. X., Anderson B. D. Molecular distributions in interphases: statistical mechanical theory combined with molecular dynamics simulation of a model lipid bilayer. Biophys J. 1994 Mar;66(3 Pt 1):561–572. doi: 10.1016/s0006-3495(94)80833-1. [DOI] [PMC free article] [PubMed] [Google Scholar]