Abstract
The lengths of the actin (thin) filaments in sarcomeres directly influence the physiological properties of striated muscle. Although electron microscopy techniques provide the highest precision and accuracy for measuring thin filament lengths, significant obstacles limit their widespread use. Here, we describe distributed deconvolution, a fluorescence-based method that determines the location of specific thin filament components such as tropomodulin (Tmod) or probes such as phallacidin (a phalloidin derivative). Using Tmod and phallacidin fluorescence, we were able to determine the thin filament lengths of isolated chicken pectoralis major myofibrils with an accuracy and precision comparable to electron microscopy. Additionally, phallacidin fluorescence intensity at the Z line provided information about the width of Z lines. Furthermore, we detected significant variations in thin filaments lengths among individual myofibrils from chicken posterior latissimus dorsai and embryonic chick cardiac myocytes, suggesting that a ruler molecule (e.g., nebulin) does not strictly determine thin filament lengths in these muscles. This versatile method is applicable to myofibrils in living cells that exhibit significant variation in sarcomere lengths, and only requires a fluorescence microscope and a CCD camera.
Full Text
The Full Text of this article is available as a PDF (609.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agard D. A., Hiraoka Y., Shaw P., Sedat J. W. Fluorescence microscopy in three dimensions. Methods Cell Biol. 1989;30:353–377. doi: 10.1016/s0091-679x(08)60986-3. [DOI] [PubMed] [Google Scholar]
- Almenar-Queralt A., Gregorio C. C., Fowler V. M. Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle: evidence that thin filaments rearrange to form striated myofibrils. J Cell Sci. 1999 Apr;112(Pt 8):1111–1123. doi: 10.1242/jcs.112.8.1111. [DOI] [PubMed] [Google Scholar]
- Almenar-Queralt A., Lee A., Conley C. A., Ribas de Pouplana L., Fowler V. M. Identification of a novel tropomodulin isoform, skeletal tropomodulin, that caps actin filament pointed ends in fast skeletal muscle. J Biol Chem. 1999 Oct 1;274(40):28466–28475. doi: 10.1074/jbc.274.40.28466. [DOI] [PubMed] [Google Scholar]
- Ao X., Lehrer S. S. Phalloidin unzips nebulin from thin filaments in skeletal myofibrils. J Cell Sci. 1995 Nov;108(Pt 11):3397–3403. doi: 10.1242/jcs.108.11.3397. [DOI] [PubMed] [Google Scholar]
- Bukatina A. E., Fuchs F., Watkins S. C. A study on the mechanism of phalloidin-induced tension changes in skinned rabbit psoas muscle fibres. J Muscle Res Cell Motil. 1996 Jun;17(3):365–371. doi: 10.1007/BF00240934. [DOI] [PubMed] [Google Scholar]
- Burkholder T. J., Lieber R. L. Sarcomere length operating range of vertebrate muscles during movement. J Exp Biol. 2001 May;204(Pt 9):1529–1536. doi: 10.1242/jeb.204.9.1529. [DOI] [PubMed] [Google Scholar]
- Cano M. L., Cassimeris L., Joyce M., Zigmond S. H. Characterization of tetramethylrhodaminyl-phalloidin binding to cellular F-actin. Cell Motil Cytoskeleton. 1992;21(2):147–158. doi: 10.1002/cm.970210208. [DOI] [PubMed] [Google Scholar]
- Dabiri G. A., Turnacioglu K. K., Sanger J. M., Sanger J. W. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9493–9498. doi: 10.1073/pnas.94.17.9493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De La Cruz E. M., Pollard T. D. Transient kinetic analysis of rhodamine phalloidin binding to actin filaments. Biochemistry. 1994 Dec 6;33(48):14387–14392. doi: 10.1021/bi00252a003. [DOI] [PubMed] [Google Scholar]
- Fowler V. M., Sussmann M. A., Miller P. G., Flucher B. E., Daniels M. P. Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol. 1993 Jan;120(2):411–420. doi: 10.1083/jcb.120.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
- Granzier H. L., Akster H. A., Ter Keurs H. E. Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. Am J Physiol. 1991 May;260(5 Pt 1):C1060–C1070. doi: 10.1152/ajpcell.1991.260.5.C1060. [DOI] [PubMed] [Google Scholar]
- Gregorio C. C., Fowler V. M. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J Cell Biol. 1995 May;129(3):683–695. doi: 10.1083/jcb.129.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holtzer H., Hijikata T., Lin Z. X., Zhang Z. Q., Holtzer S., Protasi F., Franzini-Armstrong C., Sweeney H. L. Independent assembly of 1.6 microns long bipolar MHC filaments and I-Z-I bodies. Cell Struct Funct. 1997 Feb;22(1):83–93. doi: 10.1247/csf.22.83. [DOI] [PubMed] [Google Scholar]
- Knight P. J., Trinick J. A. Preparation of myofibrils. Methods Enzymol. 1982;85(Pt B):9–12. doi: 10.1016/0076-6879(82)85004-0. [DOI] [PubMed] [Google Scholar]
- Kouchi K., Takahashi H., Shimada Y. Incorporation of microinjected biotin-labelled actin into nascent myofibrils of cardiac myocytes: an immunoelectron microscopic study. J Muscle Res Cell Motil. 1993 Jun;14(3):292–301. doi: 10.1007/BF00123094. [DOI] [PubMed] [Google Scholar]
- Kruger M., Wright J., Wang K. Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol. 1991 Oct;115(1):97–107. doi: 10.1083/jcb.115.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Littlefield R., Almenar-Queralt A., Fowler V. M. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat Cell Biol. 2001 Jun;3(6):544–551. doi: 10.1038/35078517. [DOI] [PubMed] [Google Scholar]
- Littlefield R., Fowler V. M. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu Rev Cell Dev Biol. 1998;14:487–525. doi: 10.1146/annurev.cellbio.14.1.487. [DOI] [PubMed] [Google Scholar]
- Lu M. H., DiLullo C., Schultheiss T., Holtzer S., Murray J. M., Choi J., Fischman D. A., Holtzer H. The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol. 1992 Jun;117(5):1007–1022. doi: 10.1083/jcb.117.5.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohtsuki I. Number of anti-troponin striations along the thin filament of chick embryonic breast muscle. J Biochem. 1979 May;85(5):1377–1378. [PubMed] [Google Scholar]
- Ojima K., Lin Z. X., Zhang Z. Q., Hijikata T., Holtzer S., Labeit S., Sweeney H. L., Holtzer H. Initiation and maturation of I-Z-I bodies in the growth tips of transfected myotubes. J Cell Sci. 1999 Nov;112(Pt 22):4101–4112. doi: 10.1242/jcs.112.22.4101. [DOI] [PubMed] [Google Scholar]
- PAGE S. G., HUXLEY H. E. FILAMENT LENGTHS IN STRIATED MUSCLE. J Cell Biol. 1963 Nov;19:369–390. doi: 10.1083/jcb.19.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson T. F., Winegrad S. The measurement and dynamic implications of thin filament lengths in heart muscle. J Physiol. 1979 Jan;286:607–619. doi: 10.1113/jphysiol.1979.sp012640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger J. M., Mittal B., Pochapin M. B., Sanger J. W. Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol. 1986 Jun;102(6):2053–2066. doi: 10.1083/jcb.102.6.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sosa H., Popp D., Ouyang G., Huxley H. E. Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Biophys J. 1994 Jul;67(1):283–292. doi: 10.1016/S0006-3495(94)80479-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Squire J. M. Architecture and function in the muscle sarcomere. Curr Opin Struct Biol. 1997 Apr;7(2):247–257. doi: 10.1016/s0959-440x(97)80033-4. [DOI] [PubMed] [Google Scholar]
- Trombitás K., Frey L., Pollack G. H. Filament lengths in frog semitendinosus and tibialis anterior muscle fibres. J Muscle Res Cell Motil. 1993 Apr;14(2):167–172. doi: 10.1007/BF00115451. [DOI] [PubMed] [Google Scholar]
- Vigoreaux J. O. The muscle Z band: lessons in stress management. J Muscle Res Cell Motil. 1994 Jun;15(3):237–255. doi: 10.1007/BF00123477. [DOI] [PubMed] [Google Scholar]
- Zhukarev V., Sanger J. M., Sanger J. W., Goldman Y. E., Shuman H. Distribution and orientation of rhodamine-phalloidin bound to thin filaments in skeletal and cardiac myofibrils. Cell Motil Cytoskeleton. 1997;37(4):363–377. doi: 10.1002/(SICI)1097-0169(1997)37:4<363::AID-CM7>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- van Leeuwen J. L. Optimum power output and structural design of sarcomeres. J Theor Biol. 1991 Mar 21;149(2):229–256. doi: 10.1016/s0022-5193(05)80279-6. [DOI] [PubMed] [Google Scholar]