Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2565–2579. doi: 10.1016/S0006-3495(02)75599-9

Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling.

Pierre Coutu 1, Joseph M Metzger 1
PMCID: PMC1302046  PMID: 11964244

Abstract

Parvalbumin (PV) has recently been shown to increase the relaxation rate when expressed in intact isolated cardiac myocytes via adenovirus gene transfer. We report here a combined experimental and mathematical modeling approach to determine the dose-response and the sarcomere length (SL) shortening-frequency relationship of PV in adult rat cardiac myocytes in primary culture. The dose-response was obtained experimentally by observing the PV-transduced myocytes at different time points after gene transfer. Calcium transients and unloaded mechanical contractions were measured. The results were as follows. At low estimated [PV] (approximately 0.01 mM), contractile parameters were unchanged; at intermediate [PV], relaxation rate of the mechanical contraction and the decay rate of the calcium transient increased with little effects on amplitude; and at high [PV] (approximately 0.1 mM), relaxation rate was further increased, but the amplitudes of the mechanical contraction and the calcium transient were diminished when compared with control myocytes. The SL shortening-frequency relationship exhibited a biphasic response to increasing stimulus frequency in controls (decrease in amplitude and re-lengthening time from 0.2 to 1.0 Hz followed by an increase in these parameters from 2.0 to 4.0 Hz). The effect of PV was to flatten this frequency response. This flattening effect was partly explained by a reduction in the variation in fractional binding of PV to calcium during beats at high frequency. In conclusion, experimental results and mathematical modeling indicate that there is an optimal PV range for which relaxation rate is increased with little effect on contractile amplitude and that PV effectiveness decreases as the stimulus frequency increases.

Full Text

The Full Text of this article is available as a PDF (714.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Díaz M. E., Trafford A. W., Eisner D. A. The effects of exogenous calcium buffers on the systolic calcium transient in rat ventricular myocytes. Biophys J. 2001 Apr;80(4):1915–1925. doi: 10.1016/S0006-3495(01)76161-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eberhard M., Erne P. Calcium and magnesium binding to rat parvalbumin. Eur J Biochem. 1994 May 15;222(1):21–26. doi: 10.1111/j.1432-1033.1994.tb18836.x. [DOI] [PubMed] [Google Scholar]
  3. Feher J. J., Waybright T. D., Fine M. L. Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle. J Muscle Res Cell Motil. 1998 Aug;19(6):661–674. doi: 10.1023/a:1005333215172. [DOI] [PubMed] [Google Scholar]
  4. Godt R. E., Maughan D. W. On the composition of the cytosol of relaxed skeletal muscle of the frog. Am J Physiol. 1988 May;254(5 Pt 1):C591–C604. doi: 10.1152/ajpcell.1988.254.5.C591. [DOI] [PubMed] [Google Scholar]
  5. Green H. J., Klug G. A., Reichmann H., Seedorf U., Wiehrer W., Pette D. Exercise-induced fibre type transitions with regard to myosin, parvalbumin, and sarcoplasmic reticulum in muscles of the rat. Pflugers Arch. 1984 Apr;400(4):432–438. doi: 10.1007/BF00587545. [DOI] [PubMed] [Google Scholar]
  6. Hattori Y., Toyama J., Kodama I. Cytosolic calcium staircase in ventricular myocytes isolated from guinea pigs and rats. Cardiovasc Res. 1991 Aug;25(8):622–629. doi: 10.1093/cvr/25.8.622. [DOI] [PubMed] [Google Scholar]
  7. Heizmann C. W., Berchtold M. W., Rowlerson A. M. Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7243–7247. doi: 10.1073/pnas.79.23.7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hou T. T., Johnson J. D., Rall J. A. Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. J Physiol. 1992 Apr;449:399–410. doi: 10.1113/jphysiol.1992.sp019092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hou T. T., Johnson J. D., Rall J. A. Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. J Physiol. 1991 Sep;441:285–304. doi: 10.1113/jphysiol.1991.sp018752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lim C. C., Apstein C. S., Colucci W. S., Liao R. Impaired cell shortening and relengthening with increased pacing frequency are intrinsic to the senescent mouse cardiomyocyte. J Mol Cell Cardiol. 2000 Nov;32(11):2075–2082. doi: 10.1006/jmcc.2000.1239. [DOI] [PubMed] [Google Scholar]
  11. Lorell B. H. Significance of diastolic dysfunction of the heart. Annu Rev Med. 1991;42:411–436. doi: 10.1146/annurev.me.42.020191.002211. [DOI] [PubMed] [Google Scholar]
  12. Morgan J. P. Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med. 1991 Aug 29;325(9):625–632. doi: 10.1056/NEJM199108293250906. [DOI] [PubMed] [Google Scholar]
  13. Pauls T. L., Cox J. A., Berchtold M. W. The Ca2+(-)binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim Biophys Acta. 1996 Apr 10;1306(1):39–54. doi: 10.1016/0167-4781(95)00221-9. [DOI] [PubMed] [Google Scholar]
  14. Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rome L. C., Cook C., Syme D. A., Connaughton M. A., Ashley-Ross M., Klimov A., Tikunov B., Goldman Y. E. Trading force for speed: why superfast crossbridge kinetics leads to superlow forces. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5826–5831. doi: 10.1073/pnas.96.10.5826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rome L. C., Klimov A. A. Superfast contractions without superfast energetics: ATP usage by SR-Ca2+ pumps and crossbridges in toadfish swimbladder muscle. J Physiol. 2000 Jul 15;526(Pt 2):279–286. doi: 10.1111/j.1469-7793.2000.t01-1-00279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shannon T. R., Ginsburg K. S., Bers D. M. Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Biophys J. 2000 Jan;78(1):322–333. doi: 10.1016/S0006-3495(00)76595-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spirito P., Bellone P., Harris K. M., Bernabo P., Bruzzi P., Maron B. J. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med. 2000 Jun 15;342(24):1778–1785. doi: 10.1056/NEJM200006153422403. [DOI] [PubMed] [Google Scholar]
  19. Stemmer P., Akera T. Concealed positive force-frequency relationships in rat and mouse cardiac muscle revealed by ryanodine. Am J Physiol. 1986 Dec;251(6 Pt 2):H1106–H1110. doi: 10.1152/ajpheart.1986.251.6.H1106. [DOI] [PubMed] [Google Scholar]
  20. Szatkowski M. L., Westfall M. V., Gomez C. A., Wahr P. A., Michele D. E., DelloRusso C., Turner I. I., Hong K. E., Albayya F. P., Metzger J. M. In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. J Clin Invest. 2001 Jan;107(2):191–198. doi: 10.1172/JCI9862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wahr P. A., Michele D. E., Metzger J. M. Parvalbumin gene transfer corrects diastolic dysfunction in diseased cardiac myocytes. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11982–11985. doi: 10.1073/pnas.96.21.11982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Westerblad H., Allen D. G. Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle. J Physiol. 1994 Oct 1;480(Pt 1):31–43. doi: 10.1113/jphysiol.1994.sp020338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Westfall M. V., Rust E. M., Albayya F., Metzger J. M. Adenovirus-mediated myofilament gene transfer into adult cardiac myocytes. Methods Cell Biol. 1997;52:307–322. [PubMed] [Google Scholar]
  24. Winslow R. L., Rice J., Jafri S., Marbán E., O'Rourke B. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res. 1999 Mar 19;84(5):571–586. doi: 10.1161/01.res.84.5.571. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES