Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2645–2651. doi: 10.1016/S0006-3495(02)75606-3

Studies of Pseudomonas aeruginosa azurin mutants: cavities in beta-barrel do not affect refolding speed.

Irina Pozdnyakova 1, Jesse Guidry 1, Pernilla Wittung-Stafshede 1
PMCID: PMC1302053  PMID: 11964251

Abstract

Pseudomonas aeruginosa azurin is a blue-copper protein with a Greek-key fold. Removal of copper produces an apoprotein with the same structure as holoazurin. To address the effects on thermodynamic stability and folding dynamics caused by small cavities in a beta-barrel, we have studied the behavior of the apo-forms of wild-type and two mutant (His-46-Gly and His-117-Gly) azurins. The equilibrium- and kinetic-folding and unfolding reactions appear as two-state processes for all three proteins. The thermodynamic stability of the two mutants is significantly decreased as compared with the stability of wild-type azurin, in accord with cavities in or near the hydrophobic interior having an overall destabilizing effect. Large differences are also found in the unfolding rates: the mutants unfold much faster than wild-type azurin. In contrast, the folding-rate constants are almost identical for the three proteins and closely match the rate-constant predicted from the native-state topology of azurin. We conclude that the topology is more important than equilibrium stability in determining the folding speed of azurin.

Full Text

The Full Text of this article is available as a PDF (152.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T. Copper protein structures. Adv Protein Chem. 1991;42:145–197. doi: 10.1016/s0065-3233(08)60536-7. [DOI] [PubMed] [Google Scholar]
  2. Buckle A. M., Cramer P., Fersht A. R. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Biochemistry. 1996 Apr 9;35(14):4298–4305. doi: 10.1021/bi9524676. [DOI] [PubMed] [Google Scholar]
  3. Capaldi A. P., Radford S. E. Kinetic studies of beta-sheet protein folding. Curr Opin Struct Biol. 1998 Feb;8(1):86–92. doi: 10.1016/s0959-440x(98)80014-6. [DOI] [PubMed] [Google Scholar]
  4. Carlsson U., Jonsson B. H. Folding of beta-sheet proteins. Curr Opin Struct Biol. 1995 Aug;5(4):482–487. doi: 10.1016/0959-440x(95)80032-8. [DOI] [PubMed] [Google Scholar]
  5. Eaton W. A., Thompson P. A., Chan C. K., Hage S. J., Hofrichter J. Fast events in protein folding. Structure. 1996 Oct 15;4(10):1133–1139. doi: 10.1016/s0969-2126(96)00121-9. [DOI] [PubMed] [Google Scholar]
  6. Fersht A. R. Nucleation mechanisms in protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):3–9. doi: 10.1016/s0959-440x(97)80002-4. [DOI] [PubMed] [Google Scholar]
  7. Fersht A. R. Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1525–1529. doi: 10.1073/pnas.97.4.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finkelstein A. V. Rate of beta-structure formation in polypeptides. Proteins. 1991;9(1):23–27. doi: 10.1002/prot.340090104. [DOI] [PubMed] [Google Scholar]
  9. Gilardi G., Mei G., Rosato N., Canters G. W., Finazzi-Agrò A. Unique environment of Trp48 in Pseudomonas aeruginosa azurin as probed by site-directed mutagenesis and dynamic fluorescence spectroscopy. Biochemistry. 1994 Feb 15;33(6):1425–1432. doi: 10.1021/bi00172a020. [DOI] [PubMed] [Google Scholar]
  10. Hamill S. J., Steward A., Clarke J. The folding of an immunoglobulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology. J Mol Biol. 2000 Mar 17;297(1):165–178. doi: 10.1006/jmbi.2000.3517. [DOI] [PubMed] [Google Scholar]
  11. Hammann C., van Pouderoyen G., Nar H., Gomis Rüth F. X., Messerschmidt A., Huber R., den Blaauwen T., Canters G. W. Crystal structures of modified apo-His117Gly and apo-His46Gly mutants of Pseudomonas aeruginosa azurin. J Mol Biol. 1997 Feb 21;266(2):357–366. doi: 10.1006/jmbi.1996.0764. [DOI] [PubMed] [Google Scholar]
  12. Jackson S. E. How do small single-domain proteins fold? Fold Des. 1998;3(4):R81–R91. doi: 10.1016/S1359-0278(98)00033-9. [DOI] [PubMed] [Google Scholar]
  13. Jeuken L. J., Ubbink M., Bitter J. H., van Vliet P., Meyer-Klaucke W., Canters G. W. The structural role of the copper-coordinating and surface-exposed histidine residue in the blue copper protein azurin. J Mol Biol. 2000 Jun 9;299(3):737–755. doi: 10.1006/jmbi.2000.3754. [DOI] [PubMed] [Google Scholar]
  14. Karlsson B. G., Pascher T., Nordling M., Arvidsson R. H., Lundberg L. G. Expression of the blue copper protein azurin from Pseudomonas aeruginosa in Escherichia coli. FEBS Lett. 1989 Mar 27;246(1-2):211–217. doi: 10.1016/0014-5793(89)80285-6. [DOI] [PubMed] [Google Scholar]
  15. Leckner J., Bonander N., Wittung-Stafshede P., Malmström B. G., Karlsson B. G. The effect of the metal ion on the folding energetics of azurin: a comparison of the native, zinc and apoprotein. Biochim Biophys Acta. 1997 Sep 26;1342(1):19–27. doi: 10.1016/s0167-4838(97)00074-5. [DOI] [PubMed] [Google Scholar]
  16. Nar H., Huber R., Messerschmidt A., Filippou A. C., Barth M., Jaquinod M., van de Kamp M., Canters G. W. Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin. Eur J Biochem. 1992 May 1;205(3):1123–1129. doi: 10.1111/j.1432-1033.1992.tb16881.x. [DOI] [PubMed] [Google Scholar]
  17. Nar H., Messerschmidt A., Huber R., van de Kamp M., Canters G. W. Crystal structure of Pseudomonas aeruginosa apo-azurin at 1.85 A resolution. FEBS Lett. 1992 Jul 20;306(2-3):119–124. doi: 10.1016/0014-5793(92)80981-l. [DOI] [PubMed] [Google Scholar]
  18. Pace C. N. The stability of globular proteins. CRC Crit Rev Biochem. 1975 May;3(1):1–43. doi: 10.3109/10409237509102551. [DOI] [PubMed] [Google Scholar]
  19. Plaxco K. W., Simons K. T., Baker D. Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol. 1998 Apr 10;277(4):985–994. doi: 10.1006/jmbi.1998.1645. [DOI] [PubMed] [Google Scholar]
  20. Pozdnyakova I., Guidry J., Wittung-Stafshede P. Copper stabilizes azurin by decreasing the unfolding rate. Arch Biochem Biophys. 2001 Jun 1;390(1):146–148. doi: 10.1006/abbi.2000.2369. [DOI] [PubMed] [Google Scholar]
  21. Pozdnyakova I., Guidry J., Wittung-Stafshede P. Probing copper ligands in denatured Pseudomonas aeruginosa azurin: unfolding His117Gly and His46Gly mutants. J Biol Inorg Chem. 2001 Feb;6(2):182–188. doi: 10.1007/s007750000189. [DOI] [PubMed] [Google Scholar]
  22. Schönbrunner N., Pappenberger G., Scharf M., Engels J., Kiefhaber T. Effect of preformed correct tertiary interactions on rapid two-state tendamistat folding: evidence for hairpins as initiation sites for beta-sheet formation. Biochemistry. 1997 Jul 22;36(29):9057–9065. doi: 10.1021/bi970594r. [DOI] [PubMed] [Google Scholar]
  23. Takano K., Funahashi J., Yamagata Y., Fujii S., Yutani K. Contribution of water molecules in the interior of a protein to the conformational stability. J Mol Biol. 1997 Nov 21;274(1):132–142. doi: 10.1006/jmbi.1997.1365. [DOI] [PubMed] [Google Scholar]
  24. Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
  25. den Blaauwen T., Hoitink C. W., Canters G. W., Han J., Loehr T. M., Sanders-Loehr J. Resonance Raman spectroscopy of the azurin His117Gly mutant. Interconversion of type 1 and type 2 copper sites through exogenous ligands. Biochemistry. 1993 Nov 23;32(46):12455–12464. doi: 10.1021/bi00097a025. [DOI] [PubMed] [Google Scholar]
  26. van Pouderoyen G., Andrew C. R., Loehr T. M., Sanders-Loehr J., Mazumdar S., Hill H. A., Canters G. W. Spectroscopic and mechanistic studies of type-1 and type-2 copper sites in Pseudomonas aeruginosa azurin as obtained by addition of external ligands to mutant His46Gly. Biochemistry. 1996 Feb 6;35(5):1397–1407. doi: 10.1021/bi951604w. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES